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Abstract: In the first of this pair of papers, it was proven that there cannot be a physical com

to which one can properly pose any and all computational tasks concerning the physical un

It was then further proven that no physical computer C can correctly carry out all computat

tasks that can be posed to C. As a particular example, this result means that no physical co

that can, for any physical system external to that computer, take the specification of that ex

system’s state as input and then correctly predict its future state before that future state a

occurs; one cannot build a physical computer that can be assured of correctly “processing

mation faster than the universe does”. These results do not rely on systems that are infinite,

non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely

infinitely dense computer, with computational powers greater than that of a Turing Machine.

generality is a direct consequence of the fact that a novel definition of computation — “phy

computation” — is needed to address the issues considered in these papers, which conc
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physical computers. While this novel definition does not fit into the traditional Chomsky hie

chy, the mathematical structure and impossibility results associated with it have parallels

mathematics of the Chomsky hierarchy. This second paper of the pair presents a prelim

exploration of some of this mathematical structure. Analogues of Chomskian results conce

universal Turing Machines and the Halting theorem are derived, as are results concerni

(im)possibility of certain kinds of error-correcting codes. In addition, an analogue of algorith

information complexity, “prediction complexity”, is elaborated. A task-independent boun

derived on how much the prediction complexity of a computational task can differ for two di

ent reference universal physical computers used to solve that task, a bound similar to the “e

ing” bound governing how much the algorithm information complexity of a Turing mach

calculation can differ for two reference universal Turing machines. Finally, it is proven that e

the Hamiltonian of our universe proscribes a certain type of computation, or prediction com

ity is unique (unlike algorithmic information complexity), in that there is one and only version

it that can be applicable throughout our universe.
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INTRODUCTION

Recently there has been heightened interest in the relationship between physics and co

tion ([1-33]). This interest extends far beyond the topic of quantum computation. On the

hand, physics has been used to investigate the limits on computation imposed by operatin

puters in the real physical universe. Conversely, there has been speculation concerning the

imposed on the physical universe (or at least imposed on our models of the physical univer

the need for the universe to process information, as computers do.

To investigate this second issue one would like to know what fundamental distinctions, if

there are between the physical universe and a physical computer. To address this issue the

this pair of papers begins by establishing that the universe cannot contain a computer to whi

can pose any arbitrary computational task. Accordingly, paper I goes on to consider com

indexed subsets of computational tasks, where all the members of any such subsetcanbe posed to

the associated computer. It then proves that one cannot build a computer that can “proces

mation faster than the universe”. More precisely, it is shown that one cannot build a compute

can, for any physical system, correctly predict any aspect of that system’s future state befo

future state actually occurs. This is true even if the prediction problem is restricted to be from

set of computational tasks that can be posed to the computer.

This asymmetry in computational speeds constitutes a fundamental distinction betwee

universe and the set of all physical computers. Its existence casts an interesting light on the

of Fredkin, Landauer and others concerning whether the universe “is” a computer, whether

are “information-processing restrictions” on the laws of physics, etc. [10, 18]. In a certain s

the universe is more powerful than any information-processing system constructed within it

be. This result can alternatively be viewed as a restriction on the universe as a whole — th

verse cannot support the existence within it of a computer that can process information as fa

can.

The analysis of paper I also establishes (for example) the necessarily fallible nature of r
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iction, of control, and of observation. (This latter result can be viewed as a kind of uncert

principle that does not rely on quantum mechanics.) The way that results of such general

derived is by examining the underlying issues from the broad perspective of the computa

character of physical systems in general, rather than that of some single precisely specified

cal system. The associated mathematics does not directly involve dynamical systems like

machines. Rather it casts computation in terms of partitions of the space of possible worldlin

the universe. For example, to specify what input a particular physical computer has at a par

time is to specify a particular subset of all possible worldlines of the universe; different inpu

the computation correspond to different such subsets. Similar partitions specify outputs of a

ical computer. Results concerning the (im)possibility of certain kinds of physical computatio

derived by considering the relationship between these kinds of partitions. In its being defin

terms of such partitions, “physical computation” involves a structure that need not even be in

tiated in some particular physically localized apparatus; the formal definition of a physical

puter is general enough to also include more subtle non-localized dynamical processes un

across the entire universe.

This second paper begins with a cursory review of these partition-based definitions

results of paper I. Despite its being distinct from the mathematics of the Chomsky hierarch

elaborated below, the mathematics and impossibility results governing these partitions bears

parallels with that of the Chomsky hierarchy. Section 2 of this second paper explicates so

that mathematical structure, involving topics ranging from error correction to the (lack of) tra

tivity of computational predictability across multiple distinct computers. In particular, results

presented concerning physical computation analogues of the mathematics of Turing mac

e.g., “universal” physical computers, and Halting theorems for physical computers. In additio

analogue of algorithmic information complexity, “prediction complexity”, is elaborated. A ta

independent bound is derived on how much the prediction complexity of a computational tas

differ for two different reference universal physical computers used to solve that task. This b

is similar to the “encoding” bound governing how much the algorithmic information comple
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of a Turing machine calculation can differ for two reference universal Turing machines. It is

proven that one of two cases must hold. One is that the Hamiltonian of our universe proscr

certain type of computation. The other possibility is that, unlike conventional algorithmic in

mation complexity, its physical computation analogue is unique, in that there is one and onl

sion of it that can be applicable throughout our universe.

Throughout these papers,B ≡ {0, 1}, ℜ is defined to be the set of all real numbers, ‘^’ is th

logical andoperator, and ‘NOT’ is the logicalnot operator applied toB. To avoid proliferation of

symbols, often set-delineating curly brackets will be used surrounding a single symbol, in w

case that symbol is to taken to be a variable with the indicated set being the set of all values

variable. So for example “{y}” refers to the set of all values of the variable y. In addition o(A

the cardinality of any set A, and 2A is the power set of A. u∈ U are the possible states of the un

verse, and
^
U is the space of allowed trajectories through U. Soû ∈ ^

U is a single-valued map from

t ∈ ℜ to u ∈ U, with ut ≡ ût the state of the universe at time t. Note that since the univers

microscopically deterministic, ut for any t uniquely specifies
^
u. Sometimes there will be implicit

constraints on
^
U. For example, we will assume in discussing any particular computer that

space
^
U is restricted to worldlineŝu that contain that computer. An earlier analysis address

some of the issues considered in this pair of papers can be found in [30].

I. REVIEW OF DEFINITIONS AND FOUNDATIONAL RESULTS RELATED TO

PHYSICAL COMPUTATION

In paper I the process by which real physical computers make predictions concerning ph

systems is abstracted to produce a mathematical definition of physical computation. This s

reviews that definition and the associated fundamental mathematical results. The rea

referred to paper I for more extensive discussion of the definitions.
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i) Definition of a Physical Computer

We start by distinguishing the specification of what we want the computer to calculate

the results of that calculation:

Definition 1: Any questionq ∈ Q is a pair, consisting of a set A ofanswersand a single-valued

function from ^u ∈ ^
U to α ∈ A. A(q) indicates the A-component of the pair q.

Here we restrict attention to Q that are non-empty and such that there exist at least two ele

in A(q) for at least one q∈ Q. We make no othera priori assumptions concerning the spac

{A(q ∈ Q)} and Q. In particular, we make no assumptions concerning their finiteness.

Example 1 (conventional prediction of the future):Say that our universe contains a system

external to our computer that is closed in the time interval [0, T], and let u be the values of th

ments of a set of canonical variables describing the universe.α is the t = T values of the compo-

nents of u that concern S, measured on some finite grid G of finite precision. q is this definiti

α with G and the like fully specified. (So q is a partition of the space of possible uT, and therefore

of
^
U, andα is an element of that partition.) Q is a set of such q’s, differing in G, whose assoc

answers our computer can (we hope) predict correctly.

The input to the computer is implicitly reflected in itst = 0 physical state, as our interpretatio

of that state. In this example (though not necessarily in general), that input specifies what qu

we want answered, i.e., which q and associated T we are interested in. It also delineates

several regions R⊆ ^
U, each of which, intuitively, gives the t = 0 state of S. Throughout each s

R, the system S is closed from the rest of the universe during t∈ [0, T]. The precise R delineated

further specifies a set of possible values of u0 (and therefore of the Hamiltonian describing S), fo

example by being an element of a (perhaps irregular) finite precision grid over U0, G'. If, for some

R, q( û ) has the same value for allû ∈ R, then this input R uniquely specifies whatα is for any

associated̂u. If this is not the case, then the R input to the computer does not suffice to an
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question q. So for any q and region R both of which can be specified in the computer’s inp

must be a subset of a region q-1(α) for someα.

Implicit in this definition is some means for correctly getting the information R into the co

puter’s input. In practice, this is often done by having had the computer coupled to S som

before time 0. As an alternative, rather than specify R in the input, we could have the input co

a “pointer” telling the computer where to look to get the information R. (The analysis of th

papers holds no matter how the computer gains access to R.) In addition, in practice the inpu

ing R, q, and T, is an element of a partition over an “input section” of our computer. In su

case, the input is itself an element of a finite precision grid over^U, G". So an element of G" spec

ifies an element of G (namely q) and element of G' (namely R.)

Given its input, the computer (tries to) form its prediction forα by first running the laws of

physics on a u0 having the specified value as measured on G', according to the specified Ham

nian, up to the specified time T. The computer then applies q(.) to the result. Finally, it writes

prediction forα onto its output and halts. (More precisely, using some fourth finite precision

G"' over its output section, it “writes out” (what we interpret as) its prediction for what region

U the universe will be in at T, that prediction being formally equivalent to a prediction of a reg

in
^
U.) The goal is to have it do this, with the correct value ofα, by timeτ < T. Note that to have

the computer’s output be meaningful, it must specify the question q being answered as well

answerα, i.e., the output must be a physical state of the computer that we interpret as a que

answer pair.

Consider again the case where there is in fact a correct prediction, i.e., where R is ind

subset of the region q-1(α) for someα. For this case, formally speaking, “all the computer has

do” in making its prediction is recognize which such region in the partition q that is input to

computer contains the region R that is also input to the computer. Then it must output the la

that region in q. In practice though, q and R are usually “encoded” differently, and the com

must “translate” between those encodings to recognize which region q-1(α) contains R; this trans-

lation constitutes the “computation”.
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Given this definition of a question, we can now define the input and output portions of a p

ical computer by generalizing our example of conventional computation.

Definition 2: i) A (computation)partition is a set of disjoint subsets of^u whose union equals^U,

or equivalently a single-valued mapping from
^
U into a non-empty space of partition-elemen

labels. Unless stated otherwise, any partition is assumed to contain at least two elements.

ii) In an output partition, the space of partition element labels is a space of possible “outpu

{OUT}.

iii) In a physical computer, we require {OUT} to be the space of all pairs {OUTq ∈ Q, OUTα ∈

A(OUTq)}, for some Q and A(.) as defined in Def. (1). This space — and therefore the assoc

output partition — is implicitly a function of Q. To make this explicit, often, rather than an out

partition, we will consider the full associated double (Q, OUT(.)), where OUT(.) is the output

tition û ∈ ^
U → OUT ∈ {OUTq ∈ Q, OUTα ∈ A(OUTq)}. Also, we will find it useful to use an

output partition to define an associated (“prediction”) partition, OUTp(.) : ^u → (A(OUTq(
^u ),

OUTα( ^u )).

iv) In an input partition, the space of partition element labels is a space of possible “inpu

{IN}.

v) A (physical) computerconsists of an input partition and an output partition double. Unl

explicitly stated otherwise, both of those partitions are required to be (separately) surjective

Since we are restricting attention to non-empty Q, {OUT} is non-empty. We say that OUTq is the

“question posed to the computer”, and OUTα is “the computer’s answer”. The surjectivity of IN(.

and OUT(.) is a restriction on {IN} and {OUT}, respectively.

While motivated in large measure by the task of predicting the future, the definition of ph

cal computation is far broader, concerning any computation that can be cast in terms of i

questions about physical states of nature, and associated answers. This set of questions inc
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particular any calculation that can be instantiated in a physical system in our universe, wh

that question is a “prediction” or not. All such physically realizable calculations are subject to

results presented below.

Even in the context of prediction though, the definition of a physical computer presented

is much broader than computers that work by the process outlined in Ex. 1 (and therefo

associated theorems are correspondingly further-ranging in their implications). For examp

computer in Ex. 1 has the laws of physics explicitly built into its “program”. But our definiti

allows other kinds of “programs” as well. Our definition also allows other kinds of informat

input to the computer besides q and a region R (which together with T constitute the inputs

1). As discussed in paper I, we will only need to require that there besomet = 0 state of the com-

puter that, by accident or by design, induces the correct prediction at t =τ. This means we do not

even require that the computer’s initial state IN “accurately describes” the t = 0 external uni

in any meaningful sense. Our generalization of Ex. 1 preserves analogues of the grids G (in

G" (in IN(.)) and G"' (in OUT(.)), but not of the grid G'.

In fact, our formal definition of a physical computer broadens what we mean by the “inp

the computer”, IN, even further. While the motivation for our definition, exemplified in Ex. 1,

the partition IN(.) “fix the initial state of the computer’s inputs section”, that need not be the c

IN(.) can reflectany attributes of^u. An “input” — an element of a partition of
^
U — need not

even involve the t = 0 state of the physical computer. In other words, as we use the terms he

computer’s “input” need not be specified in some t = 0 state of a physical device. Indeed, ou

inition does not even explicitly delineate the particular physical system within the universe

we identify with the computer. (A physical computer is simply an input partition together with

output partition.) This means we can even choose to have the entire universe “be the com

For our purposes, we do not need tighter restrictions in our definition of a physical comp

Nonetheless, a pedagogically useful example is any localized physical device in the real

meeting our limited restrictions. No matter how that device works, it is subject to the impossib

results described below.
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ii) Intelligible computation

Consider a “conventional” physical computer, consisting of an underlying physical sy

whose t = 0 state sets IN(û ) and whose state at timeτ sets OUT(̂u ), as in our example above

We wish to analyze whether the physical system underlying that computer can calculate the

sufficiently quickly. In doing so, we do not want to allow any of the “computational load” of

calculation to be “hidden” in a restriction on the possible questions. Our computer possess a

cient degree of flexibility. We impose this via the following construction (see paper I for a deta

justification):

Definition 3: Consider a physical computer C≡ (Q, IN(.), OUT(.)) and a^U-partitionπ. A func-

tion from
^
U into B, f, is anintelligibility function (for π) if

∀ û, û' ∈ ^
U, π( û ) =π( û' ) ⇒ f( û ) = f( û' ).

A set F of such intelligibility functions is anintelligibility set for π.

We view any intelligibility function as a question by defining A(f) to be the image of^U under

f. If F is an intelligibility set forπ and F⊆ Q, we say thatπ is intelligible to C with respect to F. If

the intelligibility set is not specified, it is implicitly understood to be the set of all intelligibili

functions forπ.

We say that two physical computers C1 and C2 aremutually intelligible(with respect to the

pair {Fi}) iff both OUT2 is intelligible to C1 with respect to F2 and OUT1 is intelligible to C2 with

respect to F1.

Plugging in,π is intelligible to C iff ∀ intelligibility functions f, ∃ q ∈ OUTq such that q = f, i.e.,

such that A(q) = the image of^U under f, and such that∀ û ∈ ^
U, q( û ) = f( û ). Note that sinceπ

contains at least two elements, ifπ is intelligible to C,∃ OUTq ∈ {OUTq} such that A(OUTq) =

B, an OUTq such that A(OUTq) = {0}, and one such that A(OUTq) = {1}. Usually we are inter-

ested in the case whereπ is an output partition of a physical computer, as in mutual intelligibil
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Intuitively, an intelligibility function for a partitionπ is a mapping from the elements ofπ into

B. π is intelligible to C if Q contains all binary-valued functions ofπ, i.e., if C can have posed any

question concerning the universe as measured onπ. This flexibility in C ensures that C’s outpu

partition isn’t “rigged ahead of time” in favor of some particular question concerningπ. Formally,

by the surjectivity of OUT(.), the requirement of intelligibility means that∃ ^u' ∈ ^
U such that∀ ^u

∈ ^
U, [OUTq(

^u' )]( ^u ) = f( ^u ).

iii) Predictable computation

We can now formalize the concept of a physical computer’s “making a correct prediction

Definition 4: Consider a physical computer C, partitionπ, and intelligibility set forπ, F. We say

thatπ is weakly predictable to C with respect to F iff:

i) π is intelligible to C with respect to F, i.e., F⊆ OUTq ;

ii) ∀ f ∈ F, ∃ IN ∈ {IN} that weakly induces f, i.e., an IN such that:

IN(
^
u )  =  IN

⇒

OUTp( û )  =  (A(OUTq(
^u )), OUTα( ^u ))  =  (A(f), f( û )).

Intuitively, condition (ii) means that for all questions q in F, there is an input state such that if

initialized to that input state, C’s answer to that question q (as evaluated atτ) must be correct.

Note that we even allow the computer to be mistaken about what question it is answering —

for OUTq(
^u ) to not equal f — so long as C’s answer is correct. We will say a computer C' w

output OUT'(.) is weakly predictable to another if the partition OUT'p(.) is. If we just say “predict-

able” it will be assumed that we mean weak predictability.

As a formal matter, note that in the definition of predictable, even though f(.) is surjective

A(f) (cf. Def. 3), it may be that for some IN, the set of values f(^u ) takes on when^u is restricted

so that IN( ^u ) = IN do not cover all of A(f). The reader should also bear in mind that by surjec
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iv) Distinguishable computers

There is one final definition that we need before we can establish our unpredictability re

Definition 5: Consider a set of n physical computers {Ci ≡ (Qi, INi(.), OUTi(.)) : i = 1, ..., n}. We

say {Ci} is ( input) distinguishableiff ∀ n-tuples (IN1 ∈ {IN 1}, ..., INn ∈ {IN n}), ∃ û ∈ ^
U such

that∀ i, INi( û ) = INi simultaneously.

We say that {Ci} is pairwise(input) distinguishableif any pair of computers from {Ci} is distin-

guishable, and will sometimes say that any two such computers C1 and C2 “are distinguishable

from each other”. We will also say that {Ci} is a maximal(pairwise) distinguishable set if there

are no physical computers C∉ {Ci} such that C∪ {Ci} is a (pairwise) distinguishable set.

iv) The impossibility of posing arbitrary questions to a computer

The first result in paper I states that for any pair of physical computers there arealways

binary-valued questions about the state of the universe that cannot even be posed to at leas

those physical computers:

Theorem 1: Consider any pair of physical computers {Ci : i = 1, 2}. Either∃ finite intelligibility

set F2 for C2 such that C2 is not intelligible to C1 with respect to F2, and/or∃ finite intelligibility

set F1 for C1 such that C1 is not intelligible to C2 with respect to F1.

Thm. 1 reflects the fact that while we do not want to have C’s output partition “rigged ahea

time” in favor of some single question, we also cannot require too much flexibility of our c

puter. It is necessary to balance these two considerations. Accordingly, before analyzing p

tion of the future, to circumvent Thm. 1 we must define a restricted kind of intelligibility se
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which Thm. 1 does not apply:

Definition 6: An intelligibility function f for an output partition OUT(.) isquestion-independent

iff ∀ û, û' ∈ Û:

OUTp( û )  =  OUTp( û' )

⇒

     f( û ) = f( û' ).

An intelligibility set as a whole is question-independent if all its elements are.

We write C1 > C2 (or equivalently C2 < C1) and say simply that C2 is (weakly)predictableto

C1 (or equivalently that C1 can predictC2) if C2 is weakly predictable to C1 for all question-inde-

pendent finite intelligibility sets for C2.

Similarly, from now on we will say that C2 is intelligible to C1 without specification of an

intelligibility set if C2 is intelligible to C1 with respect to all question-independent finite intellig

bility sets for C2.

Intuitively, f is question-independent if its value does not vary with q among any set of q a

which share the same A(q). As an example, say our physical computer is a conventional

workstation. Have a certain section of the workstation’s RAM be designated the “output sec

of that workstation. That output section is further divided into a “question subsection” design

(i.e., “containing”) a q, and an “answer subsection” designating anα. Say that for all q that can be

designated by the question subsection A(q) is a single bit, i.e., we are only interested in b

valued questions. Then for a question-independent f, the value of f can only depend on w

the answer subsection contains a 0 or a 1. It cannot vary with the contents of the question s

tion.

A detailed example of a pair of mutually (question-independent) intelligible computers is

sented in paper I. In addition to this explicit demonstration that Thm. 1 does not hold for ques

independent intelligibility sets, examples 2, 2', and 2" of paper I establish that:
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a) There are pairs of input-distinguishable physical computers, C1, C2, in which C2 is predictable

to C1, C1 > C2;

b) Given C1 and C2 as in (a), we could have yet another computer C3 that also predicts C2 (i.e.,

such that C3 > C2) while being distinguishable from C1;

c) Given C1 and C2 as in (a), we could have a computer C4, distinguishable from both C1 and C2,

where C4 > C1, so that C4 > C1 > C2. We can do this either with C4 > C2 or not.

ii) The impossibility of assuredly correct prediction

To establish our main impossibility result in paper I we started with the following lemma

Lemma 1: Consider a physical computer C1. If ∃ any output partition OUT2 that is intelligible to

C1, then∃ q1 ∈ Q1 such that A(q1) = B, a q1 ∈ Q1 such that A(q1) = {0}, and a q1 ∈ Q1 such that

A(q1) = {1}.

This can be used to establish paper I’s central theorem:

Theorem 2: Consider any pair of distinguishable physical computers {Ci : i = 1, 2}. It is not pos-

sible that both C1 > C2 and C1 < C2.

Restating it, Thm. 2 says that either∃ finite question-independent intelligibility set for C1, F1,

such that C1 is not predictable to C2 with respect to F1, and/or∃ finite question-independent intel

ligibility set for C2, F2, such that C2 is not predictable to C1 with respect to F2.

Thm. 2 holds no matter how large and powerful our computers are; it even holds if the “p

ical system underlying” one or both of our computers is the whole universe. It also holds if ins

C2 is the rest of the physical universe external to C1. A set of implications of Thm. 2 for various

kinds of physical prediction scenarios are discussed in paper I. As also discussed there, im
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bility results that are in some senses even stronger than those associated with Thm. 2 hol

we do not restrict ourselves to distinguishable computers, as we do in Thm. 2.

3. THE MATHEMATICAL STRUCTURE RELATING PHYSICAL COMPUTERS

There is a rich mathematical structure governing the possible predictability relations

among sets of physical computers, especially if one relaxes the presumption (obtaining in m

paper I) that the universe can contain multiple copies of C. This section presents some o

structure.

i)  The graphical structure over a set of computers induced by weak predictability

While it directly concerns pairs of physical computers, Thm. 2 also has implications fo

predictability relationships within sets of more than two computers. An example is the follow

Corollary 1: It is not possible to have a fully distinguishable set of n physical computers {i}

such that C1 > C2 > ... > Cn > C1.

Proof: Hypothesize that the corollary is wrong. Define the composite device C* ≡ (ΙΝ∗(.) ≡

Πi=1
n-1 INi(.), Q1, OUT1(.)). Since {Ci} is fully distinguishable, IN*(.) is surjective. Therefore C*

is a physical computer.

Since by hypothesis Cn is intelligible to Cn-1, ∃ OUTn-1
q such that A(OUTn-1

q) = B. Also,

since Cn-2 > Cn-1, ∃ INn-2 ∈ {IN n-2} such that ∀ ^u ∈ ^U for which A(OUTn-1
q(

^u )) = B,

INn-2( ^u ) = INn-2 ⇒ OUTn-2
α( ^u ) = OUTn-1

α( ^u ). Iterating and exploiting full distinguishabil-

ity, ∃ (IN1, ..., INn-2) such that∀ ^u ∈ ^U for which A(OUTn-1
q(

^u )) = B, (IN1( ^u ), .., INn-2( ^u ))

= (IN1, ..., INn-2) ⇒ OUT*( ^u ) = OUT1( ^u ) = OUTn-1( ^u ). The same holds when we restrict^u

so that the space A(OUTn-1
q(

^u )) = {1}, and when we restrict^u so that A(OUTn-1
q(

^u )) = {0}.

Since by hypothesis Cn is intelligible to Cn-1, and since IN*(.) is surjective, this result means
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that Cn is predictable to C*. Conversely, since Cn > C1 by hypothesis, the output partition of C* is

predictable to Cn, and therefore C* is. Finally, since {Ci} is fully distinguishable, C* and Cn are

distinguishable. Therefore Thm. 2 applies, and by using our hypothesis we arrive at a cont

tion. QED.

What are the general conditions under which two computers can be predictable to

another? By Thm. 2, we know they aren’t if they’re input-distinguishable. What about if the

one and the same? No physical computer is input-distinguishable from itself, so Thm. 2 do

apply to this issue. However it still turns out that Thm. 2’s implication holds for this issue:

Theorem 3: No physical computer is predictable to itself.

Proof. Assume our corollary is wrong, and some computer C is predictable to itself. Since by

inition predictability implies intelligibility, we can apply Lemma 1 to establish that there is a q∈

OUTq, q', such that A(q') =B. Therefore one question-independent intelligibility function for C

the function f from^u ∈ ^U → B that equals 1 if A(OUTq(
^u )) = B and OUTα( ^u ) = 0, and equals

0 otherwise. Therefore by hypothesis∃ IN ∈ {IN} such that IN( ^u ) = IN ⇒ A(OUTq(
^u )) = B

and OUTα( ^u ) = f( ^u ). But if A(OUTq(
^u )) = B, then f( ^u ) = NOT[OUTα( ^u )], by definition of

f(.). Since IN is surjective, this means that there is at least one^u ∈ ^U such that A(OUTq(
^u )) = B

and OUTα( ^u ) = NOT[OUTα( ^u )]. This is impossible.QED.

Intuitively, this result holds due to the fact that a computer cannot make as its prediction the

cal inverse of its prediction. An important corollary of this result is that no output partition is

dictable to a physical computer that has that output partition. Combining Thm. 3 and Coroll.

identifying the predictability relationship with an edge in a graph, we see that fully distingu

able sets of physical computers constitute (unions of) directed acyclic graphs.
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ii) Weak predictability and variants of error correction

When considering sets of more than two computers, it is important to realize that while

symmetric, the input-distinguishability relation need not be transitive. Accordingly, separate

wise distinguishable sets of computers may partially “overlap” one another. Similarly, stipula

the values of the inputs of any two computers in a pairwise-distinguishable set may force s

the other computers in that set to have a particular input value.

Coroll. 1 does not apply to such a set. As it turns out though, Thm. 2 still has strong imp

tions even for a set of more than two computers that is not fully distinguishable, so long as t

is pairwise distinguishable. Define agod computeras any physical computer in a pairwise distin

guishable set such that all other physical computers in that set are predictable to the god com

Then by Thm. 2, each such set can contain at most one god computer. There is at most on

puter in any pairwise distinguishable set that can correctly predict the future of all other mem

of that set, and more generally at most one that can accurately predict the past of, observe,

control any system in that set (see paper I). In particular, for any human being physical com

for any pairwise distinguishable set of computers including that human, there can be at mo

god computer. (Lest one read too much into the phrase “god computer”, note that like any

computer, a god computer is merely a set of partitions, and need not correspond to any loc

physical apparatus.)

Even a god computer may not be able to correctly predict all other computers in its d

guishable set simultaneously. The input value it needs to adopt to correctly predict some C2 may

preclude it from correctly predicting some C3 and vice-versa. One way to analyze this issue is

consider a composite partition OUT2×3 defined by the output partitions of C2 and C3. We can then

investigate whether and when our god computer can weakly predict the composite output

tion. The following definition formalizes this:

Definition 7: Consider a pairwise distinguishable set {Ci} with god computer C1. Define the par-
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titions OUTi×j ( ^u ∈ ^U ) ≡ (OUTq
i×j ( ^u ), OUTα

i×j ( ^u )), where each answer map OUTα
i×j ( ^u ) ≡

(OUT1
α( ^u ), OUT2

α( ^u )), and each question [OUTq
i×j ( ^u )] ≡ the mapping given by^u' ∈ ^U →

([OUT1
q(

^u )]( ^u' ), [OUT2
q(

^u )]( ^u' )). Then C1 is omniscientif OUT2×3×... is weakly predictable

to C1.

Intuitively, OUTi×j is just the double partition (OUTi(.), OUTj(.)) = ((OUTi
q(.), OUTi

α(.)),

(OUTj
q(.), OUTj

α(.)), re-expressed to be in terms of a single question-valued partition and a

gle answer-valued partition. To motivate this re-expression, for any two questions qi ∈ Qi and qj ∈

Qj, let qi × qj be the ordered product of the partitions qi and qj; it is the partition assigning to every

point ^u' ∈ ^U the label (qi( ^u' ), qj( ^u' )). Then if OUTiq(
^u ) is the question qi and OUTjq(

^u ) is

the question qj, OUTi×j
q ( ^u ) is the question qi × qj. OUTi×j

α is defined similarly, only with one

fewer levels of “indirection”, since answer components of output partitions are not thems

partitions (unlike question components).

Note that even though any OUTi(.) and OUTj(.) are both surjective mappings, OUTi×j need

not be surjective onto the set of quadruples {qi ∈ Qi, qj ∈ Qj, αi ∈ A(Qi), αj ∈ A(Qj)}. It is

straight-forward to verify that an omniscient computer is a god computer.

In general, one might presume that two non-god computers in a pairwise-distinguishab

could have the property that, while individually they cannot predict everything, considered jo

they would constitute a god computer, if only they could work cooperatively. An example of s

cooperativity would be having one of the computers predict when the other one’s predicti

wrong. It turns out though that under some circumstances the mere presence of some othe

puter in that pairwise distinguishable set may make such error-correction impossible, if that

computer is omniscient.

As an example of this, say we have three pair-wise distinguishable computers C1, C2, C3,

where C3 always answers with a bit (i.e., /∃ q3 ∈ Q3 such that A(q3) |⊆ B). We will want C2’s out-

put to “correct” C3’s predictions, and have those predictions potentially concern C1. So have C1

be intelligible to C3. As a technical condition, assume not only that C3’s output can be any of its
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possible question-answer pairs, but also that for any of its questions, for any of the associate

sible answers, there are situations where that answer is correct (so that C2 should leave C3’s

answer alone in those situations). Then it turns out that due to Thm. 2, if C1 is omniscient, it is not

possible that C2 always correctly outputs a bit saying whether C3’s answer is the correct respons

to C3’s question. More formally,

Corollary 2: Consider three pair-wise distinguishable computers C1, C2, C3, where /∃ q3 ∈ Q3

such that A(q3) |⊆ B. Assume that C1 is an omniscient computer, and that C1 is intelligible to C3.

Finally, assume that∀ pairs (q3 ∈ Q3, α3 ∈ A(q3)), ∃ û ∈ Û such that both OUT3q( û ) = q3 and

q3( û ) = α3 (i.e., [OUT3
q(

^u )]( ^u ) = α3). Then it is not possible that∀ û ∈ Û, OUT2
α( ^u ) = 1

if [OUT3
q(

^u )]( ^u ) = OUT3
α( ^u ), 0 otherwise.

Proof: Hypothesize that the corollary is wrong. Construct a composite device C2-3, starting by

having IN2-3(.) ≡ OUT3
q(.), Q2-3 = Q3 and OUT2-3

q(.) = OUT3
q(.). Next define the questionθ by

the ruleθ( ^u ) ≡ NOT[OUT3
α( ^u )] if OUT2

α( ^u ) = 0, θ( ^u ) ≡ OUT3
α( ^u ) otherwise. (N.b. no

assumption is made thatθ ∈ Q2-3.) To complete the definition of the composite computer C2-3,

have OUT2-3
α( ^u ) =θ( ^u ).

Now by our hypothesis,∀ ^u ∈ ^U, θ( ^u ) = [OUT3
q(

^u )]( ^u ). By the last of the conditions

specified in the corollary, this means that∀ (q2-3 ∈ Q2-3, α2-3 ∈ A(q2-3)), ∃ ^u such that

OUT2-3
q(

^u ) = q2-3 and OUT2-3
α( ^u ) = α2-3. So C2-3 allows all possible values of {OUT2-3}, as

a physical computer must. Due to surjectivity of OUT3
q, it also allows all possible values of the

space {IN2-3}. To complete the proof that C2-3 is a (surjective) physical computer, we must esta

lish that OUT2-3
α( ^u ) ∈ A(OUT2-3

q(
^u )) ∀ ^u ∈ ^U. To do this note that if for example

A(OUT2-3
q(

^u )) = A(OUT3
q(

^u )) = {1}, then since it is always the case that the OUT2-3
α( ^u ) =

[OUT2-3
q(

^u )]( ^u ) = [OUT3
q(

^u )]( ^u ), OUT2-3
α( ^u ) = 1. Similarly OUT2-3

α( ^u ) ∈

A(OUT2-3
q(

^u )) when A(OUT2-3
q(

^u )) = {0}. Finally, if A(OUT 2-3
q(

^u )) = B, then the simple

fact that OUT2-3
α( ^u ) ∈ B always means that OUT2-3

α( ^u ) ∈ A(OUT2-3
q(

^u )).
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Since C1 is intelligible to C3 and Q2-3 = Q3, C1 is intelligible to C2-3. Moreover, given any

question q2-3 ∈ Q2-3, ∃ associated IN2-3 ∈ {IN 2-3} such that∀ ^u ∈ ^U for which IN2-3( ^u ) =

IN2-3, OUT2-3( ^u ) = q2-3. But as was just shown, OUT2-3
α( ^u ) = q2-3( ^u ) for that ^u. Therefore

C1 is predictable to C2-3.

Next, since C1 is omniscient, OUT2×3 is intelligible to C1. Therefore any binary function of

the regions defined by quadruples (A(OUT2
q(

^u )), A(OUT3
q(

^u )), OUT2
α( ^u ), OUT3

α( ^u )) is

an element of Q1. Any single such region is wholly contained in one region defined by the p

(A(OUT2-3
q(

^u )), OUT2-3
α( ^u )) though. Therefore any binary function of the regions defined

such pairs is an element of Q1. Therefore C2-3 is intelligible to Q1. Similarly, the value of any

such binary function must be given by OUT1
α( ^u ) whenever IN1( ^u ) equals some associated IN1.

So C2-3 is predictable to C1.

Finally, since C1 and C3 are input-distinguishable, so are C1 and C2-3, and therefore Thm. 2

applies. This establishes that our hypothesis results in a contradiction.QED.

This result even holds if OUT2×3 is only intelligible to C1, without necessarily being predictabl

to it.

Coroll. 2 can be viewed as a restriction on the efficacy of any error correction scheme

presence of a (distinguishable) omniscient computer. There are other restrictions that hold e

the absence of such a third computer. An example is the following implication of Thm. 2:

Corollary 3: Consider two distinguishable mutually intelligible physical computers C1 and C2,

where both A(OUT1q) ⊆ B and A(OUT2
q) ⊆ B ∀ OUT1

q ∈ Q1 and OUT2q ∈ Q2. It is impossible

that C1 and C2 are “anti-predictable” to each other, in the sense that for each of them, the pr

tion they make concerning the state of the other can always be made to be wrong by appr

choice of input.

Proof: By assumption C1 and C2 are mutually intelligible. So what we must establish is wheth
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for both of them, for all intelligibility functions concerning the other one, there exists an appro

ate value of INi such that that intelligibility function is incorrectly predicted.

Hypothesize that the corollary is wrong. Then∀ question-independent intelligibility functions

for C1, f1, ∃ IN2 ∈ {IN 2} such that IN2( ^u ) = IN2 implies that [A(OUT2q( û )) = NOT[A(f1)]] ^

[OUT2
α( û ) = NOT[f1( û )]]. However by definition of question-independent intelligibility func

tions, given any such f1, there must be another question-independent intelligibility function

C1, f3, defined by f3(.) ≡ NOT(f1(.)). Therefore∃ IN2 ∈ {IN 2} such that IN2( ^u ) = IN2 implies

that [A(OUT2
q( û )) = A(f3)]  ^  [OUT2

α( û ) = f3( û )].

This NOT(.) transformation bijectively maps the set of all question-independent intelligib

functions for C2 onto itself. Since that set is finite, this means that the image of the set unde

NOT(.) transformation is the set itself. Therefore our hypothesis means that all question-ind

dent functions for C1 can be predicted correctly by C2 for appropriate choice of IN2 ∈ {IN 2}. By

similar reasoning, we see that C1 can always predict C2 correctly. Since C1 and C2 are distinguish-

able, we can now apply Thm. 2 and arrive at a contradiction.QED.

iii)  Strong predictability

At the other end of the spectrum from distinguishable computers is the case where one

puter’s input can fix another’s, either by being observed by that other computer or by settin

other computer’s input more directly. The following variant of predictability captures this r

tionship:

Definition 8: Consider a pair of physical computers C1 and C2. We say that C2 is strongly predict-

able to C1 (or equivalently that C1 can strongly predictC2), and write C1 >> C2 (or equivalently

C2 << C1) iff:

i) C2 is intelligible to C1;

ii) ∀ question-independent intelligibility functions for C2, q1, ∀ IN2 ∈ {IN 2},

∃ IN1 ∈ {IN 1} that strongly induces the pair (q1, IN2), i.e., such that:
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u ) =  IN1

⇒

    [OUT1
p( û ) = (A(q1), q1( û ))]   ^  [IN2( ^u ) = IN2].

Intuitively, if C1 can strongly predict C2, then for any IN2 and associated implication OUT2
p —

for any computation C2 might undertake — there is an input to C1 that is uniquely associated

with IN2 and that causes C1 to output (any desired question-independent intelligibility functio

of) OUT2
p. Intuitively, there is some invertible “translating” map that takes C2’s input and

“encodes” it in C1’s input, in such a way that C1 can “emulate” C2 running on C2’s input, and

thereby produce C2’s associated output. In this way C1 can emulate C2, much like universal Tur-

ing machines can emulate other Turing machines. (Recall the definition of universal T

machine, and see the definition of a universal physical computer below.)

Strong predictability of a computer implies weak predictability of that computer. (Unlike w

weak predictability, there is no such thing as strong predictability of a partition.) So for exam

both Thm. 3 and Coroll. 1 still hold if they are changed by replacing weak predictability w

strong predictability. However weak predictability does not imply strong predictability. Moreo

the mathematics for sets of physical computers some of which are strongly predictable to

other (and therefore not distinguishable) differs in some respects from that when all the com

are distinguishable (the usual context for investigations of weak predictability). An example

following result, which shows that strong predictability always is transitive, unlike weak pred

ability (cf. Ex. 2" in paper I):

Theorem 4: Consider three physical computers {C1, C2, C3}, and a partitionπ, where both C3

andπ are intelligible to C1.

i)  C1 >> C2 > π ⇒ C1 > π;

ii) C1 >> C2 >> C3 ⇒ C1 >> C3.
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Proof: To prove (i), let f be any question-independent intelligibility function forπ. By Lemma 1,

the everywhere 0-valued question-independent intelligibility function ofπ is contained in Q1, and

since C1 > C2, there must be an IN1 such that IN1( û ) = IN1 ⇒ OUT1
α( û ) = 0. The same is true

for the everywhere 1-valued function. Therefore to prove the claim we need only establish th

every question-independent intelligibility function forπ, f, for which A(f) = B, f ∈ Q1, and there

exists an IN1 such that IN1( û ) = IN1 ⇒ OUT1
α( û ) = f( û ). Restrict attention to such f from

now on.

Define a question-independent intelligibility function for C2, I2, such that A(I2) = B, and such

that for all û for which A(OUTq( û )) = B, I2( û ) = OUT2
α( û ). (Note that since C2 > π, there

both existû for which OUT2
p( û ) = (B, 1) andû such that OUT2p( û ) = (B, 0.) Now by hypoth-

esis, for any of the f we are considering,∃ IN2
f ∈ {IN 2} such that IN2( û ) = IN2

f ⇒ OUT2
p( û )

= (B, f( û )). However the fact that C1 >> C2 ⇒ ∃ IN1 ∈ {IN 1} such that IN1( û ) = IN1 ⇒

IN2( û ) = IN2
f and such that OUT1p( û ) = (A(I2), I2( û )) = (B, I2( û )). Since IN2( û ) = IN2

f for

such a û, A(OUT2
α( û )) = B, and therefore I2( û ) = OUT2

α( û ). So OUT2p( û ) for such aû

equals (B, OUT2
α( ^u )). So for that IN1, OUT1

p( û ) = (A(f), f( û )).

This establishes (i). The proof for (ii) goes similarly, with the redefinition that IN1
f fixes the

value of IN3 as well as ensuring that OUT2
p( û ) = (A(f), f( û )).QED.

Strong predictability obeys the following result which is analogous to both Thm.’s 2 and 

Theorem 5: Consider any pair of physical computers {Ci: i = 1, 2}. It is not possible that both C1

>> C2 and C1 << C2.

Proof: Choose any IN2. For any question-independent intelligibility function of OUT2
p, f, there

must exist an IN1f ∈ {IN 1} that strongly induces IN2 and f, since C1 >> C2. Label any such IN1 as

IN1
f (IN2 being implicitly fixed). So for any such f, {^u : IN1( ^u ) = IN1

f} ⊆ { ^u : IN2( ^u ) = IN2}.

However since OUT2p is not empty, there are at least two question-independent intelligib
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functions of OUT2p, f1 and f2, where A(f1) ≠ A(f2) (cf. Lemma 1). Moreover, the intersectio

{ ^u : IN1( ^u ) = IN1
f1

} ∩ { ^u : IN1( ^u ) = IN1
f2

} = ∅, since these two sets induce differen

A(OUT1
q) (namely A(f1) and A(f2), respectively). This means that {^u : IN1( ^u ) = IN1

f1
} ⊂

{ ^u : IN2( ^u ) = IN2}. On the other hand, for the same reasons, there must also exist an IN2 that

strongly induces IN1f1
. Therefore∃ IN2' such that {^u : IN2( ^u ) = IN2'} ⊂ { ^u : IN1( ^u ) =

IN1
f1

}. So { ^u : IN2( ^u ) = IN2'} ⊂ { ^u : IN2( ^u ) = IN2}. This is not compatible with the fact that

IN2(.) is a partition.QED.

Many of the conditions in the preceding results can be weakened and the associated c

sions still hold. Indeed, this is even true for Thm. 2, where we can weaken the definition of “i

ligibility” and still establish the impossibility of having both C1 > C2 and C2 > C1. (For example,

that impossibility will still obtain even if neither C1 nor C2 containsB-valued questions, if they

instead contain all possible functions mapping each others’ values of OUTp onto {0, 1, 2}.) These

weakened version are usually more obscure though, which is why they are not presented h

iv) Physical computation analogues of Halting theorems in Turing machine theory

There are several ways that one can relate the mathematical structure of physical comp

to that of conventional computer science. Here we sketch the salient concepts for one suc

tion coupling physical computation and the mathematical structure governing Turing mac

(TMs).

A TM is a device that takes in an input string on an input tape, then based on it prod

a sequence of output strings, either “halting” at some time with a final output string, or never

ing. If desired, the fact that the halt state has / hasn’t been entered by any time can be refle

a special associated pattern in the output string, in which case the sequence of output strin

always be taken to be infinite. As explicated above, in the real world inputs and (sequenc

outputs are elements of partitions of^U. So in one translation of TMs to physical computer

strings on tapes are replaced with elements of the partitions IN(.) and OUT(.). Rather
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through a set of internal states, read/write operations, state-transition rules, etc., the trans

tion of inputs to outputs in a physical computer is achieved simply through the definition o

pair of an associated input partition and output partition. For a TM that declares in its o

string whether it has halted, the physical computation analogue of whether a computatio

ever halt is simply whether^u is in some special subset of {OUT}. Although not formall

required, in the real world IN(.) and OUT(.) usually differ. In this they are analogous to TM’s w

multiple tapes rather than conventional single-tape TMs.

An alternative to identifying the full output partition of a physical computer with a TM’s o

put tape, motivated by the definition of predictability, is to identify the coarser partition^u →

OUTp(
^u ) with a TM’s output tape. (This is loosely analogous to a TM’s being able to overw

the “question” originally posed on its tape when producing its “answer” on that tape.) We

adopt this identification from now on, and use it to identify the physical computation analogu

a TM as an input partition together with the surjective mapping^u → OUTp(
^u ) of an associated

output partition.

This identification motivates several analogues of the Halting theorem. Since whether a p

ular physical computer C2 “halts” or not can be translated into whether its output is in a particu

region, the question of whether C2 halts is a particular intelligibility function of C2. Correctly

answering the question of whether C2 halts means predicting that intelligibility function of C2. In

the context of physical computation it is natural to broaden the issue to concern all intelligib

functions of C2. Accordingly, in this analogue of the claim resolved for TM’s (in the negative)

the Halting theorem, one asks if it is possible to construct a physical computer C1 that can predict

any computer C2. To answer this, consider the case where C2 is a copy of C1 (cf. Def. 2(v) of

paper I for a formal definition of a physical computer’s “copy”). Then by applying Thm.’s 2, 3

5, one sees that the answer is no, in agreement with the Halting theorem. (See also Coroll

There exist a number of alternative physical computer analogues of the Halting prob

Though not pursued at length here, it is worth briefly presenting one such alternative. This al

tive is motivated by arguing that, in the real world, one is not interested so much in whethe
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computation will ever “halt”, but rather whether the associated output is “correct”. If we t

“correct” to be relative to a particular question, this motivates the following alternative analo

of the Halting theorem:

Theorem 6: Given a set of physical computers {Ci}, /∃ C1 ∈ {Ci} such that∀ C2 ∈ {Ci},

i) C2 is intelligible to C1;

ii) ∀ q2 ∈ Q2, ∃ IN1 ∈ {IN 1} such that IN1( ^u ) = IN1 ⇒ OUT1
α( ^u ) = 1 iff q2( ^u ) =

  OUT2
α( ^u ).

Proof: Choose C2 such that OUT2(.) = OUT1(.). (If need be, to do this simply choose C2 = C1.)

Then in particular, OUT1α(.) = OUT2
α(.). Now since C2 is intelligible to C1 by hypothesis, by

Lemma 1∃ q1 ∈ Q1 such that A(q1) = {0}, and therefore∃ q2 ∈ Q2 such that A(q2) = {0}. For

that q2, OUT1
α( ^u ) = 1 iff 0 = OUT1α( ^u ), which is impossible.QED.

A TM T1 can emulate a TM T2 if for any input for T2, T1 produces the same output as T2

when given an appropriately modified version of that input. (Typically, the “modificatio

involves pre-pending an encoding of T2 to that input.) The analogous concept for a physical co

puter is strong predictability; o ne physical computer can “emulate” another if it can strongly

dict that other one. Intuitively, the two components of T1’s emulating T2, involving T2’s input and

its computational behavior, respectively, correspond to the two components of the require

concerning IN1 values that occur in the definition of strong predictability. The requirement c

cerning IN1 values that is imposed by ensuring that OUT1
p(

^u ) = (A(q), q( ^u )) for any q (that is

an intelligibility function) for C2 is analogous to encoding (the computational behavior of)

TM T2 in a string provided to the emulating TM, T1. Requiring as well that the value IN1 ensures

that IN2( ^u ) = IN2 is analogous to also including an “appropriately modified” version of T2’s

input in the string provided to T1. (Note that any mapping taking IN2 ∈ {IN 2} to an IN1 that in

turn induces that starting IN2 is invertible, by construction.) This motivates the following defin
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Definition 9: A universalphysical computer for a set of physical computers is a member of

set that can strongly predict all other members of that set.

Note that rather than reproduce the output of a computer it is strongly predicting, a univ

physical computer produces the value of an intelligibility function applied to that output. T

allows the computers in our set to have different output spaces from the universal physical

puter. However it contrasts with the situation with conventional TM’s, being a generalizatio

such TM’s.

v)  Prediction complexity

In computer science theory, given a universal TM T, the algorithmic complexity of an ou

string s is defined as the length of the smallest input string s' that when input to T produce

output. To construct our physical computation analogue of this, we need to define the “leng

an input region of a physical computer. To do this we start with the following pair of definitio

Definition 10: For any physical computer C with input space {IN}:

i) Given any partitionπ, a (weak) prediction input set(of C, for π) is any set s⊆ {IN} such

that both every intelligibility function forπ is weakly induced by an element of s, and for an

proper subset of s at least one such function is not weakly induced. We write the space of al

prediction input sets of C forπ as C-1(π).

ii) Given any other physical computer C' with input space {IN'} for which the set of all qu

tion-independent intelligibility functions is {f'}, astrong prediction input setof C, for the triple

C', in' ⊆ {IN'}, and f ' ⊆ {f'}, is any set s⊆ {IN} such that both every pair (f'∈ f ', IN' ∈ in') is

strongly induced by a member of s, and for any proper subset of s at least one such pair

strongly induced. We write the space of all strong prediction input sets (of C, for C',in', andf ') as
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Intuitively, the prediction set of C forπ / C' is a minimal subset of {IN} that is needed by C forπ /

C' to be predictable to C. In the case of strong prediction, we provide the associated definiti

extra flexibility of being able to restrict what intelligibility functions are being considered.

Now, to define the physical computation analogue of algorithmic information comple

identify the “length of an input string” with the negative logarithm of the volume of a subset of

partition IN(.):

Definition 11: Given a physical computer C and a measure dµ over ^U:

i) Define V(in ⊆ {IN}) as the measure of the set of all^u ∈ ^U such that IN(^u ) ∈ in, and define the

length of in (with respect to IN(.)) asl(in) ≡  -ln[V( in)];

ii) Given a partitionπ that is predictable to a physical computer C, define theprediction complex-

ity of π (with respect to C),c(π | C), as minρ ∈ C-1(π) [l(ρ)].

We are primarily interested in prediction complexities of binary partitions, in particular of

binary partitions induced by the separate single elements of multi-element partitions. (The b

partition induced by some p∈ π' is { ^u s.t.π'( ^u ) = p, ^u s.t.π'( ^u ) ≠ p}.) To see what Def. 11(ii)

means for such a partition, say you are given some setσ ⊂ ^U (i.e., you are given a binary partition

of ^U). Suppose further that you wish to know whether the universe is inσ, and you have some

computer C to use to answer (all four intelligibility functions of) this question. Then loos

speaking, the prediction complexity ofσ with respect to C is the minimal amount of Shanno

information that must be imposed in C’s inputs in order to be assured that C’s output corr

answers that question. In particular, ifσ corresponds to a potential future state of some system

external to C, thenc(σ | C) is a measure of how difficult it is for C to predict that future state

S.1s

In many situations it will be most natural to choose dµ to be uniform over accessible phas
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space volume, so that the complexity ofin is the negative physical entropy of constraining^u to lie

in in. But that need not be the case. For example, we can instead define dµ so that the volume of

each element of the associated {IN} is some arbitrary positive real number. In this case

lengths of the elements of {IN} provides us with an arbitrary ordering over those elements.

The following example illustrates the connection between lengths of regionsin and lengths of

strings in TM’s:

Example 3: In a conventional computer (see Ex. 1 above), we can define a “partial strin

(sometimes called a “file”) taking up the beginning of an input section as the set of all “com

strings” taking up the entire input section whose beginning is s. We can then identify the inp

the computer as such a partial string in its input section. (Typically, there would be a special

size “length of partial string” region even earlier, at the very beginning of the input section, te

the computer how much of the complete string to read to get that partial string.) If we appen

tain bits to s to get a new longer input partial string, s', the set of complete strings consisten

s' is a proper subset of the set of complete strings consistent with s. Assuming our measurµ is

independent of the contents of the “length of partial string” region, this means thatl(s')≥ l(s).

This is in accord with the usual definition of the length of a string used in Turing machine

ory. Indeed, if s' contains n more bits than does s, then there are 2n times as many complete string

consistent with s as there are consistent with s'. Accordingly, if we take logarithms to have b

l(s') = l(s) + n.

Say we want our computer to be able to predict whether^u lies in some setσ. (To maintain the

analogy with Turing machines,σ could delineate an “output partial string”. This could be done f

example by delineating a particular OUTp value, perhaps even one in some other computer.)

the usual way, this corresponds to having the binary partition {^u ∈ σ, ^u ∉ σ} be weakly predict-

able to our computer. So the prediction complexity of that prediction is the length of the sho

region of our input space that will weakly induce that prediction. (Note that since we require

all four intelligibility functions of σ be induced, more than one input “partial string” is require
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The fact that OUTp values specify the set A(OUTq) makes working with Def.’s 10 and 11 a bi

messy. In particular, to relate prediction complexity to properties of the associated universal

ical computer we must use a set of “identity” intelligibility functions defined as follows:

Definition 12 (i): Given a space X⊆ B and a physical computer C with input and output spac

{IN} and {OUT} respectively,

{I C
X} is the set of all question-independent intelligibility functions of C where A(IC

X) = X,

and where∀ û such that A(OUTq( û )) = X, ICX( û ) = OUTα( û ).

We also will need the following definition:

Definition 12 (ii): Given a space X⊆ B and a physical computer C with input and output spac

{IN} and {OUT} respectively,

when X is a set C-1(X) is also a set, defined as those IN∈ {IN} such that IN( û ) = IN ⇒

A(OUTq( û )) = X.

So for example, if X =B, a pair (IN2 ∈ [C2]-1(X), I2
X ∈ {I 2

X}) is an input to C2 and an intelligi-

bility function of C2’s output, respectively. That input IN2 induces an associated output questio

q2 ∈ OUT2
q, that takes on (both)B values as one varies over the^u input to it. Similarly, the intel-

ligibility function IN2
X takes on (both)B values as one varies over the inputs to it.

Using these definitions, we now bound how much more complex a partition can appear1

than to C2 if C1 can strongly predict C2. Though somewhat forbidding in appearance, intuitive

the bound simply reflects the complexity cost of “encoding” C2 in C1’s input.

Theorem 8:Given any partitionπ and physical computers C1 and C2 where C1 >> C2 > π,
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i) c(π | C1)   - c(π | C2) ≤

ln[o(2π)]  -  ln[3]  +

max{X ⊆B, IN2∈[C2]-1(X), I2X∈{I 2
X}} l[ (C1)

-1
(C2, IN2, I2X) ]    -

min {X ⊆B, IN2∈[C2]-1(X)} l[ IN2 ] ,

or alternatively,

ii) c(π | C1)   - c(π | C2) ≤

ln[o(2π)]    +

min {X ⊆B, IN2∈[C2]-1(X),  I2X∈{I 2
X}} l[ (C1)

-1
(C2, IN2, I2X) ]   -

min {X ⊆B, IN2∈[C2]-1(X)} l[ IN2 ]  .

Proof: Given any intelligibility function f forπ, consider any IN2f ∈ {IN 2} that weakly induces f,

i.e., such that IN2( ^u ) = IN2
f ⇒ OUT2

p(
^u ) = (A(f), f( ^u )). (The analysis will not be affected ifπ

is an output partition and we restrict attention to those intelligibility functions forπ that are ques-

tion-independent.) Since C1 >> C2, we can then choose an IN1, IN1
f(IN

2
f), to strongly induce IN2f

together with any question-independent intelligibility function of OUT2
p. (Indeed, in general

there can be more than one such value of IN1 that induces IN2f.) So in particular, we can choose i

so that the vector OUT1p(
^u ) = (A(I2A(f)), I2A(f)(

^u )) for any possible function I2
A(f) . Now for

that IN1, IN2( û ) = IN2
f, and therefore A(OUT2q( û )) = A(f), which means that I2

A(f)( û ) =

OUT2
α( û ), which in turn equals f(̂u ) for that IN2. So ∀ û such that IN1( û ) = IN1

f(IN
2
f),

OUT1
p( û ) = (A(f), f( û )). In other words, IN1f(IN

2
f) weakly induces in C1 the same intelligibil-

ity function for π that IN2
f weakly induces in C2. However since IN1( ^u ) = IN1

f(IN
2
f) ⇒

IN2
f(

^u ) = IN2
f, the set of^u ∈ ^U such that IN1( ^u ) = IN1

f(IN
2
f) is ⊆ the set such that IN2( ^u ) =

IN2
f. This means thatl(IN1

f(IN
2
f)) ≥ l(IN2

f). (Our task, loosely speaking, is to bound this diffe

ence in lengths, and then to extend the analysis to simultaneously consider all such questio

pendent intelligibility functions f.)

Take {fi} to be the set of all intelligibility functions forπ. By the preceding construction,π is

weakly predictable to C1 with a (not necessarily proper) subset of {IN1
fi(IN

2
fi
)} being a member
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(π). Now any member of (C1)
-1

(π) must contain at least three disjoint elements, cor

sponding to intelligibility functions q with A(OUT1q(
^u )) = B, {0}, or {1}. (See the discussion

just before Lemma 1.) Accordingly, the volume (as measured by dµ) of any subset of

{IN 1
fi(IN

2
fi
)} ∈ (C1)

-1
(π) must be at least 3 times the volume of the element of {IN1

fi(IN
2
fi
)} hav-

ing the smallest volume. In other words, the length of any subset of {IN1
fi(IN

2
fi
)} ∈ (C1)

-1
(π)

must be at most -ln(3) plus the length of the longest element of {IN1
fi(IN

2
fi
)}. Thereforec(π | C1)

≤ maxfi [l(IN
1
fi(IN

2
fi
))] - ln(3).

Now take {IN2
fi} to be the set in (C2)

-1
(π) with minimal length. {IN2

fi
} has at most o(2π) dis-

joint elements, one for each intelligibility function forπ. Using the relation mini[gi] = -maxi [-gi],

this means thatc(π | C2) ≥ -ln[o(2π)] + minfi [l(IN2
fi)]. Therefore we can writec(π | C1) - c(π | C2)

≤ ln[o(2π)] - ln(3) + maxfi [l(IN1
fi(IN

2
fi))] - minfi [l(IN2

fi)]. The fact that for all IN2
fi, IN2( ^u ) =

IN2
fi

⇒ A(OUT2
q(

^u )) = A(fi) ⊆ B completes the proof of (i).

To prove (ii), note that we can always construct one of the sets in (C1)
-1

(π) by starting with the

set consisting of the element of {IN1fi(IN
2
fi
)} having the shortest length, and then successive

adding other IN1 values to that set, until we get a full (weak) prediction set. Thereforec(π | C1) ≤

minfi l(IN1
fi(IN

2
fi
)). Using this bound rather than the one involving -ln(3) establishes (ii).QED.

Note that the set of X∈ B such that [C2]-1(X) exists must be non-empty, since C2 > π. Simi-

larly, C2 > π means that there is a
^
u such that A(OUTq(

^
u )) = X ⊆ B. The associated I2

X always

exists by construction: simply define I2
X(

^
u ) = OUT2

α(
^
u ) ∀ ^

u such that A(OUTq(
^
u )) = X, and

for all other
^
u, I2X(

^
u ) = x for some x∈ X. Therefore the extrema in our bounds are always we

defined.

As one variesπ, in both bounds in Thm. 8 the dependence of the bound on C1 and C2 does not

change. In addition, those bounds are independent ofπ for all π sharing the same cardinality. So i

particular they are independent ofπ for all binary partitions like those discussed in Ex. 3. Th

illustrates how Thm. 7 is the physical computation analogue of the result in Turing machine

ory that the difference in algorithmic complexity of a fixed string with respect to two separate
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Consider the possibility that for the laws of physics in our universe, there exist partitions

and OUT(.) that constitute a universal physical computer C* for all other physical computers in

our universe. Then by Thm. 5, no other computer is similarly universal. Therefore there ex

unique prediction complexity measure that is applicable to all physical computers in our univ

namely complexity with respect to C*. (This contrasts with the case of algorithmic informatio

complexity, where there is an arbitrariness in the choice of the universal TM used.) If instead

is no universal physical computer in our universe, then every physical computer C must f

least once at (strongly) predicting some other physical computer. (Note that unlike the cas

weak predictability considered in Thm. 2, here we aren’t requiring that the universe be capa

having two distinguishable versions of C.) This establishes the following:

Theorem 9: Either infallible strong prediction is impossible in our universe, or there is a uni

complexity measure in our universe.

Similar conclusions hold if one restricts attention to a set of (physically localized) conventi

physical computers (cf. Ex. 1 above), where the light cones in the set are arranged to allo

requisite information to reach the putative universal physical computer.

FUTURE WORK AND DISCUSSION

Any results concerning physical computation should, at a minimum, apply to the comp

lying on a scientist’s desk. However that computer is governed by the mathematics of deter

tic finite automata, not that of Turing machines. In particular, the impossibility results concer

Turing machines rely on infinite structures that do not exist in any computer on a scientist’s



34

y gen-

ations

puters

ring

cture

e, none

ion to

their

ticular

con-

e uni-

ions it

lation

n your

ary in

s no

viewed

ewed

pre-

gs, that

rning

ere are

def-

rva-

and
Accordingly, there is a discrepancy between the domain of those results and that of any trul

eral theory of physical computers.

On the other hand, when one carefully analyzes actual computers that perform calcul

concerning the physical world, one uncovers a mathematical structure governing those com

that is replete with its own impossibility results. While much of that structure parallels Tu

machine theory, much of it has no direct analogue in that theory. For example, this new stru

has no need for tapes, moveable heads, internal states, read/write capabilities, and the lik

of which have any obvious connection to the laws governing our universe (i.e., any connect

quantum mechanics and general relativity).

In fact, when the underlying functions of real-world computers are stripped down to

essentials, one does not even need to identify a “computer” with a device occupying a par

localized region of space-time, never mind one with heads and the like. In place of all those

cepts one has a structure involving several partitions over the space of all worldlines of th

verse. The partitions in that structure delineate a particular computer’s inputs, the quest

addresses, and its outputs. The impossibility results of physical computation concern the re

of those partitions. Computers in the conventional, space-time localized sense (the box o

desk) are simply special examples, with lots of extra restrictions that turn out to be unnecess

the underlying mathematics. Accordingly, the general definition of a “physical computer” ha

such restrictions. A side-benefit of this breadth is that the associated mathematics can be

as concerning many information-processing activities (e.g., observation, control) normally vi

as distinct from computation.

In the first paper in this pair, this definition of a physical computer was motivated and

sented, along with some associated theorems. Those theorems imply, amongst other thin

fool-proof prediction of the future is impossible — there are always some questions conce

the future that cannot even be posed to a computer, and of those that can be posed, th

always some for which the computer’s answer will be wrong. By exploiting the breadth of the

inition of physical “computation”, similar results hold for the information-processing of obse

tion and of control. All of this is true even in a classical, non-chaotic, finite universe,

regardless of the where in the Chomsky hierarchy the computer lies.
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This second paper launches from the theorems of the first paper into a broader, albeit p

nary investigation of the mathematics of physical computation. It is shown that the computa

structure relating distinct physical computers is that of a directed, acyclic graph. In addition,

is at most one computer (called a “god computer”) that can predict /observe /control all

computers. Other results derived include limits on error-correction using multiple computers

some analogues of the Halting theorem.

Next a definition of the complexity of a particular computational task for a particular phys

computer, prediction complexity, is motivated. The motivation of this new definition of comp

ity proceeds by analogy to the concept of the algorithmic information complexity of a sym

sequence for a universal Turing machine. However whereas algorithmic information comp

concerns a Turing machine’s generating such a symbol sequence, prediction complexity in

a physical computer’s addressing a computational task concerning the physical universe.

The difference in prediction complexity of a particular taskπ for two different physical com-

puters C1 and C2 is considered. It is proven that that complexity difference is bounded by a fu

tion that only depends on C1 and C2, and is independent ofπ. This bound relating the difference in

complexity for two physical computers is analogous to the algorithmic information comple

cost of emulating one universal Turing machine with another one. Finally, it is proven that eit

certain kind of computation is not possible in our universe, or there is a preferred computer

universe. If it exists, that computer could be used to uniquely specify the prediction complex

any taskπ. Accordingly, either a certain kind of computation is impossible, or there is a prefe

definition of physical complexity (in contrast to the arbitrariness inherent in algorithmic infor

tion complexity’s choice of universal Turing machine).

The following ideas are just a few of the questions that the analysis of this paper raises

i) What other restrictions are there on the predictability relations within distinguishable se

physical computers beyond that they form unions of DAG’s? In other words, which union

DAG’s can be manifested as the predictability relations within a distinguishable set? How

this answer change depending on whether we are considering sets of fully input-distinguis

computers or sets of pairwise-distinguishable computers? For what computers are there



36

it

heory

sical

Tur-

or any

per-

e for-

ms of

r and

ues of

ysical

com-

r sci-

ship

m that

efore

ws of

that

vables

entral

y to
countably infinite / uncountably infinite numbers of levels below it in the DAG to which

belongs? Might such levels be gainfully compared to the conventional computer science t

issue of position in the Chomsky hierarchy?

ii) One might try to characterize the unpredictability-of-the-future result of paper I as the phy

computation analogue of the following issue in Turing machine theory. Can one construct a

ing machine M that can take as input A, an encoding of a Turing machine and its tape, and f

such A compute what state A’s Turing machine will be in after will be in after n steps, and

form this computation in fewer than n steps? This characterization suggests investigating th

mal parallels (if any) between the results of these papers and the “speed-up” theore

computer science.

iii) More speculatively, the close formal connection between the results of this second pape

those of computer science theory suggest that it may be possible to find physical analog

most of the other results of computer science theory, and thereby construct a full-blown “ph

computer science theory”. In particular, it may be possible to build a hierarchy of physical

puting power, in analogy to the Chomsky hierarchy. In this way we could translate compute

ence theory into physics, and thereby render it physically meaningful.

We might be able to do at least some of this even without relying on the DAG relation

among the physical computers in a particular set. As an example, we could consider a syste

cancorrectly predict the future state of the universe from any current state of the universe, b

that future state occurs. The behavior of such a system is perfectly well-defined, since the la

physics are fully deterministic (for quantum mechanics this statement implicitly presumes

one views those laws as regarding the evolution of the wave function rather than of obser

determined by non-unitary transformations of that wave function). Nonetheless, by the c

unpredictability result of paper I, we know that such a system lies too high in the hierarch

exist in more than one copy in our physical universe.



37

efini-

ry by

ships

mputer

le and

like?

in

d that

edict-

algo-

that

(with

elated

, have

uture

lac-

ical
With such a system identified with an oracle of computer science theory we have the d

tion of a “physical” oracle. Can we construct further analogues with computer science theo

leveraging that definition of a physical oracle? In other words, can we take the relation

between (computer science) oracles, Turing machines, and the other members of the (co

science) Chomsky hierarchy, and use those relationships together with our (physical) orac

physical computers to gainfully define other members of a (physical) Chomsky hierarchy?

iv) Can we then go further and define physical analogues of concepts like P vs. NP, and the

Might the halting probability constantΩ of algorithmic information theory have an analogue

physical computation theory?

As another example of possible links between conventional computer science theory an

of physical computers, is there a physical computer analogue of Berry’s paradox? Weakly pr

ing a partition is the physical computation analogue of “generating a symbol sequence” in

rithmic information complexity. The core of Berry’s paradox is that there are numbers k such

no Turing machine can generate a sequence having algorithmic information complexity k

respect to some pre-specified universal Turing machine U). So for example one closely r

issue in physical computation is to characterize the physical computers C1 and x∈ ℜ such that∃

a computer C2 where C1 >> C2 and where∀ partitionsπ, C2 weakly predicts whetherc(π | C1) >

x (i.e., such that∃ IN2 ∈ {IN 2} such that IN2( ^u ) = IN2 ⇒ OUT2
p(

^u ) = (B, whetherc(π | C1) >

x)).

v) Concerns of computer science theory, and in particular of the theory of Turing machines

recently been incorporated into a good deal of work on the foundations of physics [33}. F

work involves replacing physical computers for Turing machines in this work, along with rep

ing notions like prediction complexity for notions like algorithmic complexity.

vi) Other future work involves investigating other possible definitions of complexity for phys
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computation. Even sticking to analogues of algorithmic information complexity, these m

extend significantly beyond the modifications to the definition of prediction complexity discu

in the text. For example, one might try to define the analogue of a bit sequence’s “length” in

of the number of elements in Q. One might also take the (inverse) complexity of a computa

device to be the number of input-distinguishable computers that can predict that device (wo

in some pre-specified input-distinguishable set, presumably).

vii) Yet other future work includes calculating physical complexity of various systems for som

the simple physical models of real-world computers (e.g., “billiard ball” computers, DNA co

puting, etc.) that have been investigated, and investigating the prediction complexity of sy

like crystals and gases.

FOOTNOTES

[1] Especially for non-binaryπ, many other definitions of prediction complexity besides De

11(ii) can be motivated. For example, one could reasonably define the complexity ofπ to be the

sum of the complexities of each binary partition induced by an element ofπ, i.e., one could define

it asΣp∈π c({ ^u ∈ p, ^u ∉ p} | C). Another variant, one that would differ from the one consider

in the text even for binary partitions, is minρ∈C-1(π) [ΣIN∈ρ l(IN)]. For reasons of space, no suc

alternatives will be considered in this paper.
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