
COMPILING KNOWLEDGE-BASED SYSTEMS TO ADA:
THE PRKADA CORE

Robert E. Filman∗ and Paul H. Morris†

IntelliCorp, Inc.
1975 El Camino Real

Mountain View, California 94040
USA

Received 17 May 1996
Revised 9 October 1997

This paper describes the implementation of PrkAda, a system for delivering, in Ada, Artificial In-
telligence and object-oriented applications developed using the ProKappa system. (ProKappa is a
modern, multi-paradigm knowledge-based–system development tool. It includes facilities for dy-
namic object management, rule-based processing, daemons, and graphical developer and end-user
interfaces. ProKappa is a successor system to KEE.) Creating PrkAda required creating a run-time,
Ada-language, object-system “core,” and developing a compiler to Ada from ProTalk (ProKappa's
high-level, backtracking-based language). We describe PrkAda ProTalk compiler in a companion
paper [5]. This paper concentrates on the issues involved in implementing an AI application deliv-
ery core, particularly with respect to Ada, including

• Automatic storage management (garbage collection) without either the cooperation of the com-
piler or access to the run-time stack,

• Dynamic (weak) typing in a strongly-typed language,

• Dynamic objects (objects that can change their slots and parentage as the program is executing)

• Dynamic function binding in a language designed to preclude “self-modifying programs,” and

• Implementation trade-offs in object-oriented knowledge-based systems development environ-
ments

Keywords: Knowledge-based systems compilation, knowledge-based systems development tools,
Ada, ProKappa, object-oriented systems, application delivery environments

∗ Current address: Advanced Technology Center, Lockheed Martin, 3251 Hanover Street O/H1–41 B/255, Palo
Alto, California 94304, filman@ict.atc.lmco.com

† Current address: NASA AMES Research Center, M/S 269-1, Moffitt Field CA 94035, pmor-
ris@ptolemy.arc.nasa.gov

1. Introduction

Artificial Intelligence as a technology has arisen because it has proven difficult to con-
struct, using conventional software technologies, programs that solve certain classes of
problems. These problems are characterized by

• An irregular structure,

• The necessity of creating complex data structures and applying semantically rich inter-
pretations to these structures, and

• The usefulness of a large library of structure manipulation routines together with an
environment that can manipulate, coherently present, and easily navigate such struc-
tures.

In AI, often the problem and its possible solutions are not well understood at the be-
ginning of the development process. Such problems take exploratory programming to
reveal the representational and heuristic possibilities and problems.

Ada1 is an interesting target for AI system development. Ada had a principled design
centered on the software development and maintenance process (at least as it was under-
stood in the late 1970s). Many features of Ada illustrate the influence of this methodol-
ogy, including packages (Ada's abstract datatype mechanism), overloading (a structured,
compile-time form of polymorphism), generics (a structured form of function and type
substitution), language restrictions to prevent certain classes of errors (e.g., the inability to
get pointers to object on the stack; limited private types), and a rich but restricted lan-
guage of types (one can create derived types that inherit functionality, but cannot create
function-valued functions). In implementation terms, an Ada compiler takes pains to
eliminate dynamic application decisions and certain potential inconsistencies. Issues that
cannot be decided at compile-time (e.g., the type of an entity) result in compilation errors.

Classical software engineering principles imply that the requirements, specification
and design of a system be essentially complete before beginning its implementation (e.g.,
waterfall models). Ada is a language meant to embody and enforce those principles. Ada
works best when used with a methodology where the programmer defines the modules,
behaviors and “kinds of things to be processed” early in the application development
process, and progresses by completing these abstractions.

In theory, Ada provides mechanisms (such as packages) to shield the later parts of the
development from changes in the implementation of the foundation. However, our experi-

1 Ada, as used in this paper refers to Ada83. The issues discussed (e.g., storage management of dynamic
objects, alternative data structures for AI object systems) are especially pertinent to languages of its generation
(e.g., C, Pascal). Some of these issues (e.g., storage management) are more easily treated in languages like
C++, Java and Ada95 that implement allocators and deallocators. We discuss the differences below.

ence has been that the abstraction barrier in Ada is too permeable.2 Lisp, with its weak-
typing, consistent syntax, and function-valued objects avoids these pitfalls.

Ada’s formal structure makes AI-like experimentation (or systems developed using
AI flexibility) difficult. Similarly, there is a wealth of programming environment support
(such as symbolic debuggers, read-eval-print loops, and generalized pretty-printing func-
tions) that AI environments have and that Ada environments lack.

1.1. AI development environments

What makes a good AI development environment? The best environments for AI-like
exploratory programming are knowledge-based systems (KBS) development tools. These
tools provide:

1. Objects. Objects represent the elements of the domain. Objects have slots that describe
their properties, form class/instance hierarchies, inherit values along these hierarchies,
have daemons that invoke behavior on slot access and modification, and compute
through messages (i.e., object-oriented programming). Languages such as C++ provide
objects as a mechanism for programmer control over the layout and organization of
data structures, including structures that include pointers to functions. In KBS tools,
objects are an ontological commitment about the way a domain ought to be modeled,
and incorporate a system-defined implementation and associated set of utilities.

2. Inference engines. Inference engines provide a mechanism for expressing the conclu-
sions to be drawn and the actions to be taken during system execution. Inference en-
gines are often rule systems.

3. Graphical development environments. A graphical development environment pro-
vides the KBS developer with tools for understanding and modifying knowledge base
structures and program behavior.

4. Application graphics tool kits. Application graphic tool kits facilitate creating the
end-user application graphics. Application graphics tool kits typically provide a collec-
tion of “widgets” that range from simple value displayers and menus to tables and
node/arc-graphs.

2 Examples of this permeability include (1) a mapping implemented as an array can be a parameter to a subpro-
gram. A mapping implemented as a function cannot. (2) a generic package used with a private type cannot be
used for a limited private type, even though the generic body may not do assignment (or otherwise violate the
limitations of the limited type). (3) A subprogram that matches a generic subprogram parameter and then
changes to acquire an additional parameter can no longer be used to instantiate that generic, even if the addi-
tional parameter has a default value. However, the altered subprogram is usable in every other context (bar-
ring overloading resolution ambiguities). (4) Changing the specification of basic types can require overall
system recompilation.

1.2. System goals

The earliest, most prominent, and most powerful commercial KBS development tools
were written in Lisp. Examples of such systems include KEE [1], ART [2], and Knowl-
edgeCraft [3]. These systems enhance the native Lisp environment, yielding a synergistic
synthesis of symbolic representation and programming, automatic storage management
(garbage collection) and an extensive set of native graphic and symbolic debugging tools.
Unfortunately, such Lisp environments have been less than complete commercial suc-
cesses. Problems faced by these products include dependence on an unpopular program-
ming language, a lack of connectivity to and embeddability within conventional systems,
the requirement of a large run-time environment, and the difficulty of doing real-time pro-
gramming with most implementations of garbage collection. These limitations restricted
most KBS implementations to be either laboratory prototypes or (relatively) stand-alone
applications.

Currently, there is a trend towards the development of KBS tools in “more con-
ventional” languages. Most such efforts are C-based. C has several advantages. It is syn-
tactically simple (and gives the illusion of semantic simplicity). C is easy to implement
and thus runs on almost all platforms. Programmers who know C are easy to find, C hav-
ing emerged as something of a lingua franca of programming. Similarly, C is easily
learned (though not necessarily easily mastered). Finally, C appeals to the subconscious
assembly language programmer, providing a straightforward mapping between high-level
constructs and their low-level implementation and allowing access to primitive machine
operations such as the addresses of functions and pointers to the run-time stack. On the
other hand, C has the disadvantages of being relatively unstructured, having few built-in
language features to deal with the problems of building large systems, of having no native
debugging environment, of being relatively non-standardized (and thus nontrivial to port),
and of being difficult to understand and maintain.

In response to the ebb in demand for Lisp-based tools and the corresponding swell of
C, commercial, C-based KBS tools are emerging. This work was based on one such tool,
ProKappa [4]. ProKappa can be viewed as an attempt to implement the features of Lisp-
based tools like KEE in C. ProKappa includes dynamic objects, garbage collection, and
appropriate graphics. While ProKappa alleviates many of the problems of C-language
development, it nevertheless runs on only a limited set of platforms and fails to satisfy the
requirements of certain clients for Ada-based systems

The goal of this effort was to create a delivery environment for ProKappa appli-
cations in Ada. That is, we wanted a direct path for taking applications created in the
ProKappa development environment and delivering them in Ada. Development would
include creating a knowledge base of objects, a set of C and Ada-language methods, and a
collection of rules and code in the ProKappa language ProTalk. The ProTalk compiler [5]
would then translate the user's ProTalk to Ada. The user's C-language message handlers

could be manually translated into the equivalent Ada calls (a straightforward task, there
being a one-to-one correspondence of almost all datatypes and functions between the two
systems). The complete Ada system would be composed of our Ada-language core object
library, the compiled ProTalk, the user’s message code and the embedding system. The
core object library can, at run-time, read and create ProKappa knowledge bases. The net
result is an AI application delivered in a pure-Ada environment. We illustrate this process
in Figure 1.

1.3. System overview

Given the resources available for this effort, we did not attempt to duplicate the entire
ProKappa environment in Ada. Rather, we developed enough of the system to enable em-
bedded applications: an Ada-language core—the primitive datatypes and object manager
and a compiler from ProTalk functions to Ada. We have also demonstrated the ability to
write simple methods in Ada and use them in the ProKappa C environment [6]. This work
includes no graphics, either developer or end-user, and only the most minimal developer
environment—the premise being that an application would be developed in conventional
ProKappa C and then compiled/ported to the Ada environment.

The Ada-language core is a collection of Ada packages, generics, and subprograms
that implements the delivery functionality of the ProKappa substrate and object manager.
(A more detailed description of the substrate and object manager can be found in [7].)
Important components of this core include:

1. The basic datatypes definitions for ProKappa types (PrkTypes), including structures
and routines for objects, symbols, lists, and arrays. ProKappa, like Lisp, is weakly
typed. Thus, to Ada the ProKappa datatypes must appear simultaneously to be of the
same type but nevertheless differentiable.

2. A mechanism that, when used with the appropriate hygiene, provides automatic storage
management (garbage collection) of (to-be-collected) PrkTypes.

3. A set of functions that implement the semantics of ProKappa objects, including the
ability to dynamically create objects with multiple parents, find objects by name, mod-
ify and retrieve slot and facet values, and dynamically inherit slots, slot values, facets,
and facet values.

4. Monitors (daemons) that can be invoked on slot access or modification.

5. The ProKappa style of object-oriented programming with dynamically varying instance
methods. These allow (a representation of) a function to be a slot value. Messages sent
to objects about that slot invoke that function.

Figure 1. The development and delivery environments

Reads

Reads

ProTalk➔Ada
Compiler

ProTalk C
Compiler

ProKappa
Development
Environment

C-language
Monitors

& Methods

Ada-language
Monitors

& Methods

PrkAda
Delivery

Environment

Common Elements

Application
Object
Base

ProTalk

Links

Links

Hand
trans-
late

6. A facility for reading and writing (the ASCII-style) of ProKappa object-bases.
The ProTalk-to-Ada compiler compiles a collection of ProTalk functions to Ada.

ProTalk is a language that integrates the backtracking of languages such as Prolog [8]
with conventional imperative constructs such as assignment, conditionals, and iteration.
The ProTalk-to-Ada compiler is described in [5].

1.4. The PrkAda core

ProKappa implements a substrate in the spirit of Lisp and an object manager in the spirit
and style of KEE. The underlying substrate includes a “variant-record” tagged datatype,
with subtypes for symbols, cons cells, arrays, objects, several varieties of numbers, and so
forth. The appropriate subtypes are garbage-collected. The object manager supports an
object system much like KEE’s [1], including dynamic creation and deletion of slots and
objects, dynamic rearrangement of object inheritance, slots with facets and demons on
value-change, and object-oriented programming through function-valued slots.

The PrkAda core is a collection of over 20,000 lines of Ada code, divided into over
150 files. Almost all of these files are either the specification or body of an Ada package.
A single covering package, Prk, defines the system datatypes and specifies approximately
350 user-level functions and procedures. These span almost all the functions in the devel-
opment ProKappa environment.

The technical description of a fair-sized programming system is somewhat problem-
atic. With the glow of authorship, we could clearly wax euphoric, down to the last semi-
colon, over any number of constructs. But in reality, the bulk of any such system is ordi-
nary stuff. The PrkAda core, for example, has generic packages for list processing, rou-
tines for dynamically inheriting slot and facet values, mechanisms for invoking daemons
on slot retrieval and modification, and specific subprograms for reading and printing
PrkTypes. These subprograms are sometimes clever, but the cleverness is independent of
AI and Ada—the same algorithms can be implemented in any sufficiently high-level lan-
guage. Rather, the lessons worth discussing include:

• Data polymorphism. Ada is a strongly-typed language. Object-centered AI systems
like KEE and ProKappa don’t require the declaration of the types of slot and facet val-
ues. Implementing dynamic typing in Ada requires defining a representation compati-
ble with both the AI system requirements and Ada compiler restrictions. We use a vari-
ant-record mechanism.

• Dynamic function binding. AI systems allow functions (though not closures) to be
slot values, while Ada strictly prohibits function-valued objects. Resolving this incom-
patibility while retaining modularity relies on a nested generic-case structure.

• Object representations. A delivery environment places different demands on its
primitive data structures than a development environment. In particular, one wishes to
sacrifice the developer’s ability to easily reorder the universe in return for greater run-

time efficiency. We describe the particular object representation used in PrkAda, and
discuss the alternatives for delivery-system object implementations.

• Automatic storage management. AI programmers rely on garbage collection. No Ada
compiler provides it. Garbage collection is difficult to do from the application pro-
grammer level: various protection mechanisms in Ada conspire to keep information
needed for storage management from the application programmer. We describe an ap-
proach to garbage collection in Ada that combines a collection of storage management
routines with a particular discipline (“hygiene”) of programming.

2. Data Polymorphism

An object system is fundamentally about storing and retrieving the values of slots. What
can be the value of a slot? We'd like to store a variety of things: objects, symbols, various
kinds of numbers, lists, arrays, temporals, strings, characters, and so forth. These values
range from the small (characters, integers) to the large (objects, with about a dozen fields,
many of which are themselves pointers). In a strongly typed language like Ada, only a
single “type” of thing can be stored in any location. Type polymorphism is achieved in
Ada with variant records. Let us call the kind of thing that can be the value of a slot a box.
We have the choice of either making boxes be pointers to tagged records (Figure 2a) or
themselves tagged objects that can contain either small, immediate values or a pointer to
more complex data (Figure 2b). PrkAda uses this second alternative, thereby avoiding
having to manage storage for small, common types (such as integers and booleans) at the
cost of have a bigger boxes. (Systems such as C and assembler which allow pointer ma-
nipulation can embed the tag within the pointer structure, at the cost of a smaller integer
space. This is common in implementations of Lisp and forbidden in Ada.)

Box

Box

Tag Integer

Object
Data

Tag

Box

Box

Tag Integer

ObjectTag

 Figure 2a. Boxes as pointers Figure 2b. Boxes as tagged data

3. Dynamic Function Binding

Dynamically bound subprograms appear in two places in ProKappa, either as methods, the
target of message sending in object oriented programming, or as monitors, slot access
daemon functions. The code for these dynamic subprograms can be created either by ex-

plicit programming or through the ProTalk-to-Ada compiler. The problem is that Ada
does not allow pointers to functions. (A defect cured in Ada 95 [10].) While we could
acquire function pointers through extra-Ada means (reverting to assembly language in an
implementation-dependent fashion) such an approach would not be portable. Most
straightforwardly, we need a kind of a box—a method—that can be assigned to a slot and
used to invoke a function. Desirable goals for the method mechanism include:

• Multiple collections of user functions. We ought not expect the user to accumulate
the code for all dynamic functions in a single place.

• Independence of call structure. One of the virtues of Ada is that package specifica-
tions carry enough information that users of the package need to be recompiled only
when the specification changes, not on changes to the body (implementation). We don't
want to have to recompile the entire system when the body of user packages change,
and we want to have to recompile only trivial amounts of the system when user pack-
age specifications change. Thus, the interface between the system as a whole and the
user method code must not introduce much in the way of compilation dependencies.

• Appropriate method names. User code and communications with the user should
refer to user methods by user-chosen names, not by integers or generated symbols.

• Efficiency. We seek to minimize the computational effort to map between the box “to-
ken” that represents a function and the actual call.

To achieve the first three of these goals (at a small expense to the last) we employ the fol-
lowing mechanism:

• User packages. The user defines a number of packages, P1 ... Pn that contain methods
and monitor functions. In the specification of these packages, the user must supply (a)
an enumerated type MethodFn and (b) a procedure “Apply” that takes a MethodFn,
the arguments to be used for that function, and an answer result. (Ada has a built-in
mechanism for mapping between enumerated type names and the strings that represent
them.) In the bodies of these packages, the user must implement apply to call the ap-
propriate user function for each method. (This apply is typically implemented with a
case statement.)

• GenMethods. Generic package GenMethods takes an enumerated MethodFn type, an
apply procedure of the above format, and an “ordinal” integer (indicating one of P1
... Pn), and produces a number of useful utilities for that package, including routines for
converting between the enumerated type and strings (and back again) and several apply
methods for the package. These correspond to the various occasions where a method is
called (e.g., as a by-needed daemon, as a procedure, and as an object-oriented pro-
gramming method handler).

• MethodFns. The specification of package MethodFns provides the same functionality
as GenMethods, without dependence on particular user method files. The body of

MethodFns instantiates the generic GenMethods for each user method package P1 ...
Pn, and provides a case-statement format to select the appropriate user method package
for each behavior. (Methods thus can be encoded as a pair of small integers, the first
indexing the ordinal user method package to be used; the second, the element of that
package’s enumerated MethodFns datatype.)

Figure 3 illustrates the relationships among these packages.
When a user method package is recompiled without changing its specification, noth-

ing in the rest of the system needs to be changed. When a user method package is modi-
fied to change its specification (for example, to add additional handlers), only the body of
MethodFns needs recompilation. When the user adds a new user methods package, lines
must be added to MethodFns to instantiate the generic GenMethods package and for an
additional “when” clause in each of MethodFns’s calling routines. In all cases, the speci-
fication of MethodFns does not change and the rest of the system is insulated from
changes in the user code.

Lamb and Hilfinger [11] describe an alternative mechanism for dynamic function
calling in Ada that employs tasks. Unfortunately, their mechanism does not support recur-
sive procedures. Ada 95 fixes the lack dynamic function binding, providing an explicit
mechanism for acquiring pointers to functions and invoking pointed-to functions.

User package

User package

User package

GenMethods

Instantiate

Instantiate

Instantiate

MethodFns
 case pack of
 when 1 =>
 when 2 =>
 when 3 =>

1

2

3

Figure 3. User package interface. Individual user packages are first instantiated into
the GenMethods package. The resulting packages, each associated with a small integer, are
then used in the MethodFns package. This mechanism allows the user to change both the

specification and the body of user method packages without significant recompilation.

4. Object Representation

The cost of mapping from the symbolic name of a slot to its implementation dominates
performance of a dynamic object system. PrkAda uses a dictionary mechanism to store
such mappings.

In PrkAda, a dictionary is (primarily) an array of dictionary elements. Each element
contains a slot signature: the slot name, its inheritance role and its slot type and flags.
Each row of the array corresponds to a slot. Thus, a dictionary, D, whose third row has a
dictionary element with name “Color” corresponds to a slot of name Color in position 3.
Dictionaries also include a bit of auxiliary data—in particular, a hash value over the dic-
tionary as a whole.

An object represents its slot information in two places: by which dictionary it uses
and in a table of slot actual values. Each row in the slot table has space for a local value
(values asserted directly for the object/slot), a combined value (the result of combining
the object/slot’s local values with the combined values of its parents in that slot, governed
by the particular inheritance role of the slot) and a list of that slot’s facets. The corre-
sponding row in the dictionary defines the slot's signature.

PrkAda was designed to be a delivery environment. We have found that for delivered
systems, slots of an object are usually known at object creation, and it's rare to change
them. (In practice, modifying an object’s slots and parentage easily and dynamically is an
important ingredient of a good development environment but is rarely needed in com-
pleted, delivered applications. Virtually the only subsystems that rely on dynamic objects
at application execution are certain kinds of generic libraries, for example, generic data-
base access tools.) The implementation of dictionaries reflects this assumption. The dic-
tionary mechanism parses a number of possible slot descriptions and combines them with
the descriptions of the dictionaries of the to-be-created-object's parents. This gives a list-
ing of which slots, (with which inheritance roles, slot types and flags) are to be in this
object. This combination mechanism also checks for consistency between parent slot
specifications. The system then searches for another identical dictionary. (Hashing is used
for efficiency.) If such a dictionary is found, it becomes the dictionary of the new object.
If not, a new dictionary is created and entered into the dictionary hash structure. Classes
keep a cached dictionary to be used for single-parent child instances. This accelerates
single-parent instance-object creation, by far the most common kind of object creation.

In searching for a particular (symbolically named) slot in an object, one needs to
search that object's dictionary for a slot of the given name. This is usually done by making
dictionaries be hash tables [12]. In PrkAda, we chose to keep, for each symbol, an array
of those locations taken by slots with that name in various dictionaries. The dictionary
creation routines seek to optimize slot placement so as to minimize the length of these
arrays and to reduce the search required within these arrays on slot lookup. This organiza-

tion has the potential of being a key optimization, as in certain cases we may be able to
establish the slot index of a particular symbol at compile time.

PrkAda stores facets in association lists on object slots, sharing slot structures be-
tween parents and children whenever possible. This is less time efficient than the slot or-
ganization (and a bit less space efficient) because in ProKappa, facets can be created indi-
vidually on slots on instance objects. (Slots must always be inherited, implying a bit of
uniformity to the children of classes.) Figure 4 illustrates object representation.

Ada95 includes a tagged, extensible type system whose goal is to acquire the flexibil-
ity of object-oriented programming without sacrificing too much of the ability to capture
type errors at compile time. This provides a single parent, static object system—a more
straightforward foundation for building a variety of implementations of dynamic multi-
parent objects.

5. Automatic Storage Management

The ProKappa substrate provides automatic storage management (garbage collection).
Garbage collection relies on determining the closure of the “points to” relation over the
“live roots” of a system. These live roots are (1) global variables and structures and
(2) variables and structures allocated on the stack (the locals and parameters of the cur-
rently active procedures, back to the main calling program).

There are two major varieties of garbage collection algorithms, reference counting
and mark and sweep. Reference counting keeps track of the number of active pointers to
each cell. These reference counts must be updated every time a pointer is modified. A cell
whose reference count goes to zero is garbage, and may be added to the free list. (Heuris-
tically, a cell whose reference count reaches some maximum value becomes immortal.)
Reference counting requires capturing every pointer modification in the storage manage-
ment system, has the advantage of spreading out the effort of garbage collection through-
out a program's execution, and the disadvantages of requiring space in each cell for the
reference count and of being unable to collect circular structures that are nevertheless
garbage.

In Ada, we lack access to the stack. To do mark-and-sweep garbage collection, we
would need either to cheat (with some assembly language routine, thereby losing portabil-
ity) or to avoid putting PrkAda pointers on the stack, keeping our own auxiliary stack in-
stead (thereby considerably reducing the efficiency of our system and complicating pro-
gram presentation and semantics—similar to the approach taken in [13]). In PrkAda, we
implement a garbage collection mechanism that allows user code access to collectable
items. Our storage management system uses reference counts, but similar technology
could be applied to mark-and-sweep. Thus, garbage collection within the above restric-
tions requires a bit of user help—what we call hygienic behavior.

Name
Parents
Dictionary
Slots
Other
 object
 data

Object

Name
...
Dictionary
...
Children

Class

Name
Dict.
...

Name
Dict.
...

Name
Dict.
...

Name
Dict.
...

...

Name Inherit. SType

Weight Override Def.
Pos.Faults Union Def.
Failure None Def.
...

Dictionary

...

Local Combined Facets
 Values Values

? 403 Λ
Fault72 Fault72 Λ

 Fault19
Powerout Powerour Λ
...

Slot value table

Figure 4. The anatomy of objects. One of the object’s parents and several objects that share the same dic-
tionary are also shown. For simplicity’s sake, tagged-box objects have been omitted.

To do reference counts, one needs to be able to control the initialization, assignment,
and finalization of each referable variable. (Finalization is the action taken when a vari-
able goes out of scope.) Interestingly enough, Ada’s limited private types do half of this—
initialization and assignment of user-defined variables can be restricted to take place in
private routines and can thus be captured by the storage management code. However,
limited private types lack finalization, and functions with values in the reference domain
created uncontrolled temporaries.

To clarify the above, it may help to provide a series of concrete examples. Consider a
procedure S, where box is the type of item to be reference-counted:

procedure s (x : box) is
 z : box;
begin
 z := x; -- <1>
 p (z);
end s; -- <2>

At step <1>, the cell represented by x should have its reference count incremented. At
<2>, when z goes out of scope, it should have its reference count decremented.

In Ada, by making box a limited private type we can “capture” events such as <1>.
Thus, if the routines

procedure initialize (var : in out box; val : box) is
begin
 adjust_reference_count (val, +1);
 var := val;
end initialize;

procedure assign (var : in out box; val : box) is
begin
 if is_bound (var) then
 adjust_reference_count (var, -1);
 end if;
 initialize (var, val);
end assign;

are used instead of the assignment (:=) operator, we can capture events such as <1>. (By
making boxes be a limited private type, we preclude the use of the := and compel the pro-
grammer to call our assign procedure.) However, Ada has no similar restriction for refer-
ences that go out of scope. It must become part of our hygiene to clear these variables at
the end of their context.

procedure clear (var : in out box) is
begin
 adjust_reference_count (var, -1);
end clear;

We do not need to actually assign anything into var, as it is about to go away, anyway.
Our hygienic approach to the program is then

procedure s (x : box) is
 z : box;
begin
 initialize (z, x);
 p (z);
 clear (z);
end s;

A slightly more hygienic approach would be to have an unwind-protect to insure that z is
cleared even if an exception is raised:

procedure s (x : box) is
 z : box;
begin
 initialize (z, x);

 begin
 p (z);
 exception
 when others => clear (z); raise;
 end;

 clear (z);
end s;

This gets us the first rule of memory-management hygiene:

(1) Clear local variables on program exit.

Let us next consider the call to procedure p:

procedure s (x : box) is
 z : box;
 procedure p (y : box) is
 begin
 ... -- <3>
 end p;

begin
 initialize (z, x);
 p (z);
 clear (z);
end s;

Do we have to do anything at <3>, inside p, to ensure the reference to y? Probably not.
As long as z in calling routine is not modified by p or anything p calls, it retains a refer-
ence to its cell. In that situation, p does not have to do anything to guarantee the refer-
ence. This gets us to the second rule of good hygiene:

(2) Parameters to subprograms do not require reference count maintenance, as long
as a reference to the parameter will not be modified while the procedure is execut-

ing.

That is, if you are sure that something keeps a pointer to a parameter during the sub-
program call, the called subprogram does not have to perform any reference count main-
tenance of its own. Since this desirable state of affairs usually holds, we put the burden of
keeping parameters pointed-to on calling routines. Typical ways that a calling routine can
be sure that its actual parameters are safely pointed-to during a subprogram call include:

• Making the actual parameter be something with a known global reference. That is, be-
ing sure that something else permanent also points to the parameter (e.g., an item on
the answer stack, below, or a global constant).

• Making the actual parameter be a local variable of the calling subprogram that is not
visible to any other subprogram. Thus, no called procedure can modify the parameter
value; it remains constant for the duration of the call.

• Making the actual parameter be a local variable that, while visible in other subpro-
grams, is clearly not modified by any of them. Locals visible to other subprograms are
declared within this subprogram; the variables they modify are visible in those subpro-
grams’ text.

• Inductively, by using a formal parameter of the calling subprogram.

A critical point in this algorithm is protecting global variables: structures visible through-
out the program that may be modified anywhere. In PrkAda, we ensure parameter safety
by encapsulating the reference to global structures in a purely functional interface. The
answer stack mechanism, described below, thereby provides the necessary additional,
durable reference.

However, one problem persists. Consider the function:

function fun1 return box is
 a : cons_cell;
 procedure cleanup is
 begin
 clear (a);
 end cleanup;

begin
 initialize (a, cons (nil, nil));
 cleanup;
 return a;
end fun1;

This function won’t work. The problem is that we've disposed of the cons cell a before
returning it. Similarly, if we had omitted the cleanup operation on a, then, after the value
returned from fun1 had been processed, it would have an additional, spurious reference
to a. This would be unrecoverable garbage. We have to keep the return value “long
enough” for it to be processed by the caller, but not forever. How long is “long enough”?
It can be quite long, as illustrated by the expression

f(g1(x1), g2(h21(x21), h22(i221(x221), i222(x222))))

While computing i222(x222), the temporary results of i221, h21, g2, and g1 must be pre-
served. Clearly, a single cell for answers is insufficient; a stack is needed. (We need one
such stack for each concurrent thread.) This stack would serve to preserve a reference to
the answer. Any intermediate results computed by, say, i221, would also go on this stack.
At any semicolon in a subprogram, items on the stack can be cleared back to the the stack
top at the entry of that subprogram. Figure 5 shows the state of the answer stack while
executing i222. Our implementation includes several helper functions for storing a func-
tion’s result on the answer stack. (A supplemental paper [7] discusses these in greater
detail.) The most frequently used of these is lreturning, which clears the stack to the
entry point and returns its given value, and freturning, which returns a value from a
function call.

The appropriate hygiene for using this mechanism is to remember the stack pointer
on function entry (an anspoint) and either (1) to store the answer in a particular vari-
able, and return the value through the returning function, or (2) to use the freturning
form to return the value of a function call. That is, a hygienic version of fun1, in style (1),
is

function fun1 return box is
 ansp : anspoint := note_return;
 a : box;
begin
 initialize (a, cons (nil, nil));
 return lreturning (a, ansp);
end fun1;

Thus, the third rule of good hygiene is

(3) Use the answer stack for functional results; clear it as necessary.

i222

 callees

i221 answer
h21 answer
g1 answer

p’s
 garbage

p’s
 caller’s
 data

i222

Figure 5. The answer stack. This figure shows the state of the answer stack
while evaluating i222.

Only functions (not procedures) need to use the answer stack. If the current return point
is global (i.e., if the answer stack is implemented properly with an abstract data type),
then any subprogram can call clearstack “at any semicolon.”

5.1. Alternative approaches

Baker [14] approaches these problems by defining a generic mechanism for the creation
of variables (nesting generics). Nesting generics ensures control over all three steps cru-
cial to reference counts. This approach has, however, several disadvantages: (1) Virtually
all programs become embedded in generic handlers, resulting (for almost all compilers) in
considerable code expansion, (2) Nesting generics is unable to handle pointers that are
components of structures or arrays, (3) the uniform use of exception catchers makes de-
bugging exceptions more difficult, (4) nesting generics does not solve the function prob-
lem, and (5) we've had too much experience with certified Ada compilers that could not
properly compile generics to rely on their complex use.

The approach we described has some flavor of attempting to get the actions of the
nesting generics approach without the use of the generic mechanism. We also provide a
solution to the problem of functions returning collectable boxes with the answer stack
mechanism.

Ada 95 provides controlled types with user-controlled initialization after creation, fi-
nalization before destruction and adjustment after assignment. Using controlled objects,
“good hygiene” can be enforced by the compiler.

6. Object and Slot Organization

The particular data structures used in PrkAda were a choice among many possibilities. It
is worthwhile explicating the engineering choices, the environmental assumptions behind
those choices, and the alternatives. If we may oversimplify, there are eleven primary ac-
tivities of a ProKappa-like core. Table 1 lists them in order of frequency of occurrence in
running applications (based on our experience with a variety of applications). Note that
with the dynamic, instance-method model of object oriented programming, sending a
message to an object is effectively doing a slot retrieval followed by an apply.

In frequency, slot value retrieval dominates the others, and slot value modification
dominates the remaining activities. Unlike languages like C++, the slots of an object can
dynamically change. Slot access time is mediated by the time it takes to find the storage
of the slot within the object. The art of KBS tool construction thus hinges on minimizing
this time without paying either too heavy a penalty in space or unnecessarily restricting
the variety of operations available to the user. From an engineering point of view, the
design issue for such an object system turns on the space and time efficiency of these op-
erations. Clearly, there are some engineering tradeoffs between these tasks. For example,

• Performing inheritance when a class value changes slows storing values into class slots,
but speeds retrieving values from slots (alternatively, one could perform inheritance at
retrieval time, if storage to classes was more common than retrieval from instances or
disallow dynamic inheritance, producing a more “restricted” system);

• Storing slot structures as an association list speeds slot creation but slows slot access;

• Keeping monitor information in a fixed place in the slot structure speeds finding out if
an object has a monitor and what that monitor is, but requires extra space for the moni-
tor data structure on each slot (whether or not it has attached monitors) and complicates
the overall system with additional code to handle monitor inheritance as a special case.

The appropriate tradeoffs are a function of the presumed use pattern of the system. The
usage pattern of table 1 suggests that the mapping from slot names to value addresses (and
related information) be done by a fast yet less space efficient action like hashing, while
simpler structures, such as property lists, be used for facet structures. The approach taken
in an earlier version of the system was to provide a single, universal hash table for a spe-
cific slot structure. The structure varied by whether the slot is a class slot or an instance,
and by the inheritance role of the slot. This universal hash table expands, tree-like, into
other hash tables when the density of any particular bucket is too large.

This representation proved to be space efficient but not as time efficient as desired.
For the current version of the system, we used the dictionary mechanism described above.
We associated slot information of each object in two structures: a dictionary to store “slot
constant” data such as the mapping between slot names and locations, slot types and flags,
and a value structure to store combined and local values and facets. Objects that have the
same slot signature share dictionaries; objects have their own local value structure. The
current dictionary mechanism relies on a directed sequential search of the possible posi-
tions in a dictionary for a given slot. For example, a symbol, say, color, might have as its
slot list (2, 5, 1). To find the color of an object, we look in that object’s dictionary in suc-
cessively, the second, fifth and then first rows, checking each to see if it defines color; if
none of those rows match, the object does not have a color slot. (The particular engineer-

Table 1: Primary activities of a dynamic object-system core

 1. Retrieving the values of slots.
 2. Storing values into slots.
 3. Retrieving facet values.
 4. Storing facet values.
 5. Running monitors on slot access or modification.
 6. Creating objects.
 7. Causing slots to exist at the object level, either directly or by inheritance.
 8. Causing facets to exist at the slot level, either directly or by inheritance.
 9. Inheriting slot values from parents to children.
 10. Inheriting facet values from parents to children.
 11. Deleting objects

ing assumption here is that there are few possible locations of any given name. Under that
assumption, simple sequential search is efficient than complex search algorithms. Self-
organizing lists [15, §6.1] could be used to rearrange the order of a slot name’s position
list.) If the user has been parsimonious in choosing slot names, or the application compiler
has been clever about placing names in common locations, this algorithm is likely to find
the desired slot quickly. (Of course, we could have made the dictionaries into hashing
structures themselves.) Relying on more global perspectives of slot usage, and leaving no
expansion space in objects for dynamically defined slots serves to speed up slot value
retrieval and storage at the expense of slot creation.

6.1. What can be optimized

ProKappa, in its full generality, allows the dynamic creation and modification of object
structures. Such facilities have an accompanying cost—to the extent that data structures
require additional generality, the routines for manipulating those structures can take
longer, and, to a lesser extent, the code for that manipulation requires space. PrkAda is
intended as a delivery system, one where the structure of the system can be examined by a
compiler. We work under the assumption that we can consider the entire program and
knowledge base in optimizing the system behavior. Such optimization requires inferences
on the part of the compilation system about the code. A worthwhile extension of this work
would be to allow the user to provide such inferences (as pragmas) directly.

What optimizations are possible? We note that the most efficient slot representation
is an array access, where the calling program knows (has as an integer constant) which
element of the array stores the value for the specified slot. (Object systems such as C++
accomplish this constant-time access by restricting their message handlers to manipulating
a single class of unchanging object. AI-style object systems access slots by name through
a collection of slot accessing and modification functions. In that architecture, the slot
name can be dynamically computed. The least efficient slot representations require the
full generality of property lists or hash tables that can gain and lose elements.)

Starting from this full generality, let us consider possible restrictions on system use
and the inferences we can make about the resulting data structures.3

 1. No dynamic slots. No slots can be created or deleted by the running program. The
slot data structure can be a fixed size, and does not need to be dynamically reallo-
cated.

 2. Most slots are not dynamic. That is, most slots can be guaranteed to exist for the
entire program execution. The slot data structure can be a fixed size, with provision

3 This list represents the more interesting restrictions we considered in actually developing the system. Of
course, other optimizations are possible, and particular implementations lend themselves to some optimiza-
tions that are inappropriate for others.

for a “less efficient” structure to store slots that are dynamically created during pro-
gram execution.

 3. A specific slot is not dynamic. That is, objects in a particular class are guaranteed
not to lose this slot. A compilation system could hardwire access to such slots when
the slot name is provided as a constant, at the cost of complicating the slot access
code in general (as it must now deal with an additional special case).

 4. Single-site slot introduction. A specific slot name is introduced in only a single (or
controlled) set of places in the object hierarchy. It may be possible to speed access
to the location of that slot, avoiding hashing through the dictionary to find out
where it is. If done generally enough, it may be possible to avoid most searches of
object dictionaries.

 5. Fixed slot types. Slots do not change slot type after creation. Thus, the value table
of the particular slot does not change. (In our style of object system, changing the
slot type changes which objects inherit the slot.) Efficiencies can be gained by
grouping all slots of a given type together.

 6. Fixed slot inheritance roles. Slots do not change inheritance role after creation.
(The inheritance role determines how parent and child values are combined to cre-
ate the visible child value.) This saves the code required to recompute all values in
a hierarchy.

 7. Slots are never deleted. This saves checking for deleted slots and simplifies algo-
rithms by not requiring reclaiming space for deleted slots.

 8. A class has no facets. This saves the space for the facet lists for such objects, at the
cost of introducing another check in the facet manipulation code.

 9. A class has only inherited facets. If slots are implemented with a single local facet
list (implying run-time search of their parents) we can save the space for such a list.
If parent facets are combined with their child facet lists at inheritance time, having
no local facets makes this combination particularly straightforward for single-
parent objects.

 10. A class has no inherited facets. Similarly, this saves the local facet list for such
objects, and the concurrent search.

 11. A particular slot has specific facets. We may be able to allocate a specific struc-
ture for these facets. The most obvious application of this optimization is for facets
with specific system meaning, such as monitors or type-checkers.

 12. Objects do not change parents. This saves the code for rearranging the slots of an
object dynamically, and insures that if the slot index of an object/slot has been
computed, it need not be recomputed.

 13. Objects have only a single parent. This saves the code for more complex in-
heritance algorithms, and allows more sharing between child and parent structures.

 14. Objects are never deleted. We do not have to include code to check for deleted
objects, nor code to actually mark an object as deleted and reclaim as much of its
storage as possible.

 15. A particular call refers to a constant slot name. We may be able to compile this
to a fixed index.

 16. A particular call refers to a constant facet name. We may be able to search more
directly for this facet, or even to compile it to a fixed index.

 17. A particular call refers to a constant object. We may be able to tie this object to a
particular place in the object space.

 18. No dynamic classes. If class objects cannot be dynamically created, then certain
global optimizations may be possible. For example, it may be possible to assign all
uses of slot “color” to the first element in every object’s slot table, allowing compi-
lation of retrievals and changes of color to be constant time.

 19. No dynamic objects. Objects may not be dynamically created. If objects cannot be
dynamically created, then we can pre-determine where all objects go, saving the
dynamic mapping between object names and their data structures.

Most of these restrictions are eminently reasonable, particularly for a delivery system. In
practice, running systems rarely change a slot's type or inheritance role. Others are more
application dependent. In PrkAda, we chose to include restrictions 7, 11, 12, 15, and 16;
for small additional quanta of effort, restrictions 7, 11 and 12 could have been removed.
Additionally, the implementation was constructed with assumptions 2 and 3 in mind, and
is thus less efficient when these restrictions are violated.

7. Concluding Remarks

PrkAda illustrates the possibility (and difficulties) of developing a delivery environment
for AI applications in Ada. On one hand, Ada restrictions such as the lack of a language-
based garbage collector and functional values considerably complicate the program de-
velopment process. On the other hand, given the compilation machinery we have devel-
oped, it has proven relatively straightforward to port our demonstration applications to a
machine-independent, portable Ada. The morals, perhaps, are (1) it’s possible to do AI in
Ada, though not particularly easy or fun4, and (2) by understanding the restrictions of a

4 The authors must also confess, inveterate Lisp hackers that they are, that the experience of working with Ada
has given them considerably greater respect for aspects of programming emphasized by Ada. A major goal of
Ada design was maintainability. This is reflected in both the greater pains that the programmer must go
through in creating a system in the first place, and the fact that, verily, the resulting code is more easily main-
tained.

run-time environment, it is possible to compile more efficient systems than those required
by general development environments.

PrkAda has been used for various demonstration projects within IntelliCorp [7] and
has been applied by a customer to the development of aircraft engine maintenance soft-
ware.

Acknowledgments

This work was performed while the authors were working for IntelliCorp, Inc., and was
supported by NASA/Marshall Space Flight Center under contract NAS 8-38488.

References
[1] R. E. Fikes and T. Kehler, The role of frame-based representation in reasoning, CACM, 28

(1985) 904—920.
[2] C. Williams, ART The Advanced Reasoning Tool—Conceptual Overview, Inference Corp., Los

Angeles (1984).
[3] Carnegie Group Inc., KnowledgeCraft User’s Manual, Pittsburgh, Penn. (1991).
[4] IntelliCorp, Inc., ProKappa Reference Manuals, Pub. No. PK2.0—RM1—2, (1991).
[5] R. E. Filman and P. H. Morris, Compiling Knowledge-Based Systems to Ada: The PrkAda

ProTalk Compiler, International Journal on Artificial Intelligence Tools, this issue, (1997).
[6] R. E. Filman and R. D. Feldman, Annual Report: Compiling Knowledge-Based Systems Speci-

fied in KEE to Ada. IntelliCorp, Inc., Mountain View, California (1991).
[7] R. E. Filman and P. H. Morris, Implementation Notes for PrkAda,

http://www.best.com/~morris/ftp/prkimp, (1997).
[8] R. Kowalski, Logic for Problem Solving, North-Holland, New York, (1979).
[9] D. H. D. Warren, An Abstract Prolog Instruction Set, Technical report number 309, Artificial

Intelligence Center, SRI International (1983).
[10] Ada 95 Mapping/Revision Team, Programming Language Ada: Language and Standard Li-

braries, ISO/IEC DIS 8652, Intermetrics, Cambridge, Massachusetts, (1994).
[11] D. A. Lamb and P. N. Hilfinger, Simulation of Procedure Variables Using Ada Tasks, IEEE

Trans. on Soft. Eng. VSE9 (1983) 13–15.
[12] R. E. Filman, Retrofitting Objects, ACM Conference on Object Oriented Programming Sys-

tems, Languages, and Applications (OOPSLA—87), Orlando, Florida (October 1987) 342—
353.

[13] M. Yen, Using a dynamic memory management package to facilitate building Lisp-like data
structures in Ada, Proc. AIDA-90 (1990) 85—93.

[14] H. Baker, Structured programming with limited private types in Ada: Nesting is for the soaring
eagles, Ada Letters 11 (1991) 79—90.

[15] D. Knuth, The Art of Computer Programming: Volume 3, Sorting and Searching, Addison-
Wesley, Reading Massachusetts (1973).

