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ABSTRACT
The problem of source

identification involves correctly
classifying an incoming signal into
a category that identifies the
signal's source.  

The problem is difficult because
information is not provided
concerning each source's
distinguishing characteristics and
because successive signals from the
same source differ. The source
identification problem can be made
more difficult by dynamically
changing the repertoire of sources
while the problem is being solved.

We used genetic programming to
evolve both the topology and the
sizing (numerical values) for each
component of an analog electrical
circuit that can correctly classify an
incoming analog electrical signal
into three categories.  Then, the
repertoire of sources was
dynamically changed by adding a
new source during the run.  The
paper describes how the
architecture-altering operations
enabled genetic programming to
adapt, during the run, to the
changed environment. Specifically,
a three-way source identification
circuit was evolved and then
adapted into a four-way classifier,
during the run, thereby successfully
handling the additional new source.

1. Introduction
In nature, living things exhibit considerable ability to adapt
to a change in their environment by acquiring new
capabilities.  One mechanism that enables living things to
adapt involves changes in the architecture of their genome.
When we refer to architectural changes in the genome, we do
not mean mere changes in the value of an allele at a
particular preexisting location on the chromosome.  Instead,
we mean a structural change that permits the manufacture of
an entirely new protein that, in turn, supports a new
structure, new behavior, or new functionality.  

There is an analog in the world of computer
programming to a change in the architecture of the genome
of a living organism.  That analog consists of a change in
the architecture of a computer program.  When we refer to a
change in architecture of a computer program, we mean a
structural change in the program (i.e., a change in the
number of subprograms, the number of arguments possessed
by each subprogram, or the nature of the hierarchical
references among the subprograms) as opposed to a mere
change in the sequence of work-performing primitive
operations or the number of such operations in a particular
preexisting branch of the program.  

The problem of source identification involves correctly
classifying an incoming signal into a category that identifies
the signal's source. The problem is difficult because
information is not provided concerning each source's
distinguishing characteristics and because successive signals
from the same source differ.

The source identification problem can be made more
difficult by dynamically changing the repertoire of sources
while the problem is being solved.  This kind of change
occurs, for example, when a living organism encounters
something fundamentally new and different in its
environment (and must adapt to it).  

This paper first considers the problem of evolving the
design for an analog electrical circuit that can solve the
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problem of source identification for signals coming from
two different sources, each emitting various signals from a
certain range of frequencies.  Each incoming signal is
identified as coming from the first source, the second source,
or neither source in this three-way version of the problem.   

The paper then considers a second version of the problem
in which an additional source is dynamically introduced,
during the run, as soon as genetic programming successfully
evolves a solution to the original three-way source
identification problem.  The addition of the source during the
run  (thereby creating a four-way source identification
problem) can be viewed as a change in the environment.  

One way to solve a source identification problem
involves evolving the design of an analog electrical circuit
that satisfies the specified goal of correctly classifying the
incoming signals as to their source.  Automated design
(synthesis) of analog electronic circuits (involving both the
circuit topology and component sizing) is recognized as a
difficult problem.  As Aaserud and Nielsen (1995) observe,

"Analog designers are few and far between.  In
contrast to digital design, most of the analog circuits
are still handcrafted by the experts or so-called 'zahs' of
analog design.  The design process is characterized by a
combination of experience and intuition and requires a
thorough knowledge of the process characteristics and
the detailed specifications of the actual product.

"Analog circuit design is known to be a knowledge-
intensive, multiphase, iterative task, which usually
stretches over a significant period of time and is
performed by designers with a large portfolio of skills.
It is therefore considered by many to be a form of art
rather than a science."
When genetic programming was used to adapt to a

changing environment during the run and solve the four-way
source identification problem, we included automatically
defined functions (Koza 1992, 1994).  Of course, when
automatically defined functions are used, we must address the
question of how to determine the architecture of the to-be-
evolved computer program (i.e., number of automatically
defined functions, the number of arguments that they each
possess, and the nature of the hierarchical references, if any,
among them).  Architecture-altering operations (Koza 1994c)
enable genetic programming to determine the architecture of
a multi-part computer program dynamically during a run.  A
change in the architecture of a multi-part computer program
during a run of genetic programming corresponds to a
change in genome structure in the natural world.  Thus, we
used both automatically defined functions and architecture-
altering operation for the version of the problem in which
the number of sources changes during the run.  

The architecture-altering operations for genetic
programming are motivated by the naturally occurring
mechanisms of gene duplication and gene deletion in
chromosome strings as described in Susumu Ohno's seminal
book Evolution by Gene Duplication (1970).  In nature,
sexual recombination ordinarily recombines a part of the
chromosome of one parent with a homologous part of the
second parent's chromosome.  However, in certain rare and
unpredictable occasions, recombination does not occur in
this normal way.  A gene duplication is an aberrant

recombination event that results in the duplication of a
lengthy subsequence of nucleiotide bases of the DNA.  

Ohno advanced the thesis that the creation of new
proteins (and hence new structures and new behaviors in
living things) begins with a gene duplication.  

After a subsequence of nucleiotide bases that code for a
particular protein becomes duplicated in the DNA, there are
two identical ways of manufacturing the same protein (but
no immediate change in the set of proteins that are
manufactured).  However, over time, some other genetic
operation, such as mutation or crossover, may change one or
the other of the two initially identical genes.  Over short
periods of time, the changes accumulating in a gene may be
of no practical effect or value.  As long as one of the two
genes remains unchanged, the original protein manufactured
from the unchanged gene continues to be manufactured and
the structure and behavior of the organism involved may
continue as before.  The changed gene is simply carried
along in the DNA from generation to generation.  

Natural selection exerts a powerful force in favor of
maintaining a gene that encodes for the manufacture of a
protein that is important for the survival and successful
performance of the organism.  However, after a gene
duplication has occurred, there is usually no disadvantage
associated with the loss of a second way of manufacturing
the original protein.  Consequently, natural selection usually
exerts little or no pressure to maintain a second way of
manufacturing a particular protein.  Over time, the second
gene may accumulate additional changes and diverge more
and more from the original gene.  Eventually the changed
gene may lead to the manufacture of a distinctly new and
different protein that actually does affect (advantageously or
disadvantageously) the structure and behavior of the living
thing.  When a changed gene leads to the manufacture of a
viable and advantageous new protein, natural selection again
works to preserve that new gene.  

Ohno also points out that ordinary point mutation and
crossover are insufficient to explain major changes.  

"...while allelic changes at already existing gene loci
suffice for racial differentiation within species as well
as for adaptive radiation from an immediate ancestor,
they cannot account for large changes in evolution,
because large changes are made possible by the
acquisition of new gene loci with previously non-
existent functions."
Ohno continues,

"Only by the accumulation of forbidden mutations
at the active sites can the gene locus change its basic
character and become a new gene locus.  An escape
from the ruthless pressure of natural selection is
provided by the mechanism of gene duplication.  By
duplication, a redundant copy of a locus is created.
Natural selection often ignores such a redundant copy,
and, while being ignored, it accumulates formerly
forbidden mutations and is reborn as a new gene locus
with a hitherto non-existent function."  (Emphasis in
original).  
Ohno concludes,

"Thus, gene duplication emerges as the major force
of evolution."  



In other words, it is gene duplication that enables living
things to adapt to changing environments by acquiring new
structure, new behavior, and new functionality.  The
analogy, in the realm of computer programming, of nature's
ability to adapt to changing environments is the set of
architecture-altering operations that enable an evolving
program to acquire new structure, new behavior, and new
functionality.  

Section 2 of this paper provides background on the
process of evolving analog electrical circuits using genetic
programming.  Section 3 presents the preparatory steps for
the three-way source identification problem and section 4
presents the results.  In section 5, adaptation to a changing
environment is required.   In section 6, the three-way source
identification problem is first solved and, then, the four-way
version of the problem is solved during the same run.  

2 . Evolution of Circuits
Genetic programming is an extension of John Holland's
genetic algorithm (1975) in which the population consists
of computer programs of varying sizes and shapes (Koza
1992, 1994a, 1994b; Koza and Rice 1992).  Recent work is
described in Kinnear (1994), Angeline and Kinnear (1996),
and Koza, Goldberg, Fogel, and Riolo (1996).  

Genetic algorithms have been applied to the problem of
circuit synthesis in the past.  For example, a CMOS
operational amplifier (op amp) circuit was designed using
the genetic algorithm with a problem-specific crossover
operation (Kruiskamp and Leenaerts 1995); however, the
topology of each op amp was one of 24 pre-selected
topologies based on the conventional human-designed stages
of an op amp.  In his paper "Silicon Evolution," Thompson
(1996) used a genetic algorithm to evolve a frequency
discriminator on a Xilinx 6216 reconfigurable digital gate
array operating in analog mode.  

Genetic programming evolves computer programs that
are represented as rooted, point-labeled trees with ordered
branches.  Genetic programming can be applied to circuits if
a mapping is established between the rooted, point-labeled
trees with ordered branches found in genetic programming
and the line-labeled cyclic graphs germane to circuits.
Gruau's innovative work on cellular encoding (1996) enables
genetic programming to evolve neural networks.

The principles of developmental biology suggest a way
to map program trees into circuits. The starting point of the
growth process can be a very simple embryonic electrical
circuit.  This embryo contains certain fixed and invariant
elements for the circuit that is to be designed (e.g., the
number of inputs and outputs) as well as certain wires that
are capable of subsequent modification.  An electrical circuit
is progressively developed by applying the functions in a
circuit-constructing program tree to the modifiable wires of
the embryonic circuit (and to the modifiable wires and
components of successor circuits).  

The functions in the circuit-constructing program trees
include (1) connection-modifying functions that modify the
topology of the circuit, (2) component-creating functions
that insert components into the circuit, (3) arithmetic-
performing functions that appear in arithmetic-performing
subtrees as argument(s) to the component-creating functions

and that fix the component's numerical value, and possibly
(4) calls to automatically defined functions (if used).  

The developmental process for converting a program tree
into a circuit begins with an embryonic circuit.  Figure 1
shows a one-input, one-output embryonic circuit.  This
embryo contains a voltage source VSOURCE connected to
nodes 0 (ground) and 1 , a fixed source resistor RSOURCE
between nodes 1 and 2, a modifiable wire Z0 between nodes
2 and 3, a fixed isolating wire ZOUT between nodes 3 and
5, a fixed output point (voltage probe) VOUT at node 5, and
a fixed load resistor RLOAD between nodes 5 and ground.
Only the modifiable wire Z0 is subject to modification
during the developmental process.  

Figure 1  Embryonic circuit. Each circuit-
constructing program tree in the population contains
component-creating functions and connection-modifying
functions.  Each connection-modifying function in a
program tree points to an associated highlighted component
and modifies the topology of the developing circuit.  Each
branch of the program tree is created in accordance with a
constrained syntactic structure.  Branches are composed from
construction-continuing subtrees that continue the
developmental process and arithmetic-performing subtrees
that set the value of components.  Connection-modifying
functions have one or more construction-continuing
subtrees, but no arithmetic-performing subtrees.
Component-creating functions have one construction-
continuing subtree (and often an arithmetic-performing
subtree).  Structure-preserving crossover with point typing
preserves the constrained syntactic structure.  

The component-creating functions insert a component
into the developing circuit and assign component value(s) to
the component.  Each component-creating function has a
writing head that points to an associated highlighted
component in the developing circuit and modifies the
highlighted component in a specified way. The construction-
continuing subtree of each component-creating function
points to a successor function or terminal in the circuit-
constructing program tree.  The arithmetic-performing
subtree of a component-creating function consists of a
composition of arithmetic functions and random constants
that specify, after interpretation, the value of a component.

Space does not permit giving details for each component-
creating and connection-modifying function.  For details, see
Koza, Andre, Bennett, and Keane (1996), and Koza, Bennett,
Andre, and Keane (1996a, 1996b, 1996c, 1996d, 1997).  



3 . Preparatory Steps for the
Three-Way Problem

The goal is to evolve the design for an analog electrical
circuit that classifies the incoming signal into three
categories.  Successive incoming signals from the same
source are different; however, their differences are small in
comparison to signals coming from another source.  

Specifically, the desired circuit is to produce an output of
1/2 volt (plus or minus 240 millivolts) if the frequency of
the incoming signal is within 10% of 256 Hz, produce an
output of 1 volt (plus or minus 240 millivolts) if the
frequency of the incoming signal is within 10% of 2,560
Hz, and otherwise produce an output of 0 volts (plus or
minus 240 millivolts).   The tolerance of 240 (rather than
250) millivolts was chosen to avoid the possibility of a tie
and to clearly separate the classifications.  

Before applying genetic programming to a problem of
circuit synthesis, the user must perform seven major
preparatory steps, namely (1) identifying the embryonic
circuit that is suitable for the problem,  (2) determining the
architecture of the circuit-constructing program trees, (3)
identifying the terminals, (4) identifying the primitive
functions contained in the programs, (5) creating the fitness
measure, (6) choosing control parameters, and (7) setting the
termination criterion and method of result designation.  

A one-input, one-output embryo (figure 1) was used.  
We did not use automatically defined functions for the

three-way source identification problem.  Since the
embryonic circuit has one modifiable wire (and hence one
writing head), there is one result-producing branch in each
circuit-constructing program tree.  

For this problem, the function set, Fccs, for each
construction-continuing subtree is
Fccs = {R, L, C, SERIES, PSS, PSL, FLIP, NOP,

T_PAIR_CONNECT_0, T_PAIR_CONNECT_1}.
The terminal set, Tccs, for each construction-continuing

subtree is
Tccs = {END, SAFE_CUT}.

The function set, Faps, for each arithmetic-performing
subtree is
Faps = {+, -}.

The terminal set for an arithmetic-performing subtree is
Taps = {ℜ },

where ℜ  represents random constants from –1.0 to +1.0.  
The evaluation of fitness for each individual circuit-

constructing program tree in the population begins with its
execution.  This execution applies the functions in the
program tree to the embryonic circuit, thereby developing
the embryonic circuit into a fully developed circuit.  A
netlist describing the fully developed circuit is then created.
The netlist identifies each component of the circuit, the
nodes to which that component is connected, and the value
of that component.  Each circuit is then simulated to
determine its behavior.  The 217,000-line SPICE
(Simulation Program with Integrated Circuit Emphasis)
simulation program (Quarles et al. 1994) was modified to
run as a submodule within the genetic programming system.  

For this problem, the voltage VOUT is probed at node 5
and the circuit is simulated in the frequency domain.  
SPICE is requested to perform an AC small signal analysis
and to report the circuit's behavior for each of 101 frequency
values chosen over four decades of frequency (between 1 and
10,000 Hz).  Each decade is divided into 25 parts (using a
logarithmic scale).

Fitness is measured in terms of the sum, over these 101
fitness cases, of the absolute weighted deviation between the
actual value of the output voltage at the probe point VOUT
and the target value for voltage.  

The three points that are closest to the band located
within 10% of 256 Hz are 229.1 Hz, 251.2 Hz, and 275.4
Hz.  The procedure for each of these three points is as
follows: If the voltage equals the ideal value of 1/2 volts in
this interval, the deviation is 0.0.  If the voltage is within
240 millivolts of 1/2 volts, the absolute value of the
deviation from 1/2 volts is weighted by a factor of 20.  If
the voltage is more than 240 millivolts from 1/2 volts, the
absolute value of the deviation from 1/2 volts is weighted
by a factor of 200.  This arrangement reflects the fact that
the ideal output voltage for this range of frequencies is 1/2
volt, that a 240 millivolts discrepancy is acceptable, and that
a larger discrepancy is not acceptable.  

The three points that are closest to the band located
within 10% of 2,560 Hz are 2,291 Hz, 2,512 Hz, and 2,754
Hz.  The procedure for each of these three points is as
follows: If the voltage equals the ideal value of 1 volt in this
interval, the deviation is 0.0.  If the voltage is within 240
millivolts of 1 volt, the absolute value of the deviation from
1 volt is weighted by a factor of 20.  If the voltage is more
than 240 millivolts from 1 volt, the absolute value of the
deviation from 1 volt is weighted by a factor of 200.  

The procedure for each of the remaining 95 points is as
follows:  If the voltage equals the ideal value of 0 volts, the
deviation is 0.0.  If the voltage is within 240 millivolts of 0
volts, the absolute value of the deviation from 0 volts is
weighted by a factor of 1.0.  If the voltage is more than 240
millivolts from  0 volts, the absolute value of the deviation
from 0 volt is weighted by a factor of 10.  

Greater weights (20 and 200) were used in the two
passbands because they contain only 6 of the 101 points.  

Many of the circuits that are created in the initial random
population and many that are created by the crossover and
mutation operations cannot be simulated by SPICE.  Such

circuits are assigned a high penalty value of fitness (108).  
The number of hits was defined as the number of fitness

cases (0 to 101) for which the voltage is acceptable or ideal.  
The population size, M , was 640,000.  The percentage

of genetic operations on each generation was 89% one-
offspring crossovers, 10% reproductions, and 1% mutations.
The architecture-altering operations were not used on this
problem.  Since only one result-producing branch was used
in the embryo for this problem, the maximum size, Hrpb,
for the result-producing branch was 600 points.  The other
parameters for controlling the runs of genetic programming
were the default values specified in Koza 1994 (appendix D).

This problem was run on a medium-grained parallel
Parsytec computer system consisting of 64 80-MHz Power



PC 601 processors arranged in a toroidal mesh with a host
PC Pentium type computer.  The distributed genetic
algorithm was used with a population size of Q =  10,000 at
each of the D = 64 demes.  On each generation, four
boatloads of emigrants, each consisting of B = 2% (the
migration rate) of the node's subpopulation (selected on the
basis of fitness) were dispatched to each of the four
toroidally adjacent processing nodes (Andre and Koza 1996).

4 . Results for the Three-Way
Source Identification Problem

A satisfactory solution to the problem was found on our
first run of this problem.  

The best circuit from generation 0 (figure 2) has a fitness
of 286.2 and scores 64 hits.  It has no inductors, two

capacitors, and two resistors (in addition to the source and
load resistors in the embryo).  

Figure 5 shows the behavior of the best circuit of
generation 0 in the frequency domain.  The horizontal axis is
logarithmic and ranges between 1 and 10,000 Hz.   Notice
that this inadequate circuit pays no special attention to the
frequencies around 256 Hz and 2,560 Hz.  

The best circuit from generation 20 (figure 3) has a
fitness of 129.1 and 76 hits.  Figure 6 shows its behavior.
Notice the distinct areas around 256 and 2,560 Hz.  

The best circuit from generation 106 (figure 4) achieves a
fitness of 21.4 and scores 101 hits.  It has seven inductors,
15 capacitors, and four resistors.   Figure 7 shows its
behavior in the frequency domain.  This circuit produces an
output voltage in the correct band for incoming signals from
the first source, the second source, and neither source.    

Figure 2  Best circuit of generation 0.  

Figure 3  Best circuit of generation 20.  

Figure 4  Best circuit of generation 106.  

Figure 5 Frequency domain behavior of the best
circuit of generation 0 .

Figure 6 Frequency domain behavior of the best
circuit of generation 2 0 .

Figure 7 Frequency domain behavior of the best
circuit of generation 106.    



5 . Preparatory Steps for the
Changing Environment Problem

The goal is to evolve the design for a circuit that changes its
structure as the number of different sources increases.
Initially the circuit classifies incoming signals into three
categories.  Later the circuit undergoes modification so that
it can successfully classify signals into four categories.  

During the first phase, the requirements for the desired
circuit are similar to those for the tri-state frequency
discriminator except that one of the desired outputs is 1/3
volt (instead of 1/2 volt).  Specifically, the desired circuit is
to produce an output of 1/3 volts (plus or minus 166
millivolts) if the frequency of the incoming signal is within
10% of 256 Hz, produce an output of 1 volt (plus or minus
166 millivolts) if the frequency of the incoming signal is
within 10% of 2,560 Hz, and otherwise produce an output of
0 volts (plus or minus 166 millivolts).   

After a circuit is evolved that performs the tri-state task,
the requirements are changed to include an additional
frequency band.  The run is continued with the existing
population until a new circuit is evolved that performs the
new task.  Specifically, during the second phase, the circuit
is to produce an output of 2/3 volts (plus or minus 166
millivolts) if the frequency of a signal is within 10% of 750
Hz while still producing an output of 1/3, 1, and 0 volts
(plus or minus 166 millivolts) for the original three signals.  

When genetic programming was called upon to adapt to a
changing environment during the run and solve the four-way
source identification problem, we included automatically
defined functions. Since the embryonic circuit has one
modifiable wire (and hence one writing head), there is one
result-producing branch in each circuit-constructing program
tree.  Each program in the initial population of programs
has a uniform architecture with no automatically defined
functions. The number of automatically defined functions, if
any, will emerge as a consequence of the evolutionary
process using the architecture-altering operations.  

The set of potential new functions, Fpotential, is
Fpotential = {ADF0, ADF1}.

The set of potential new terminals, Tpotential, is
Tpotential = {ARG0}.

The architecture-altering operations change the function
set, Fccs, for each construction-continuing subtree of the
result-producing and function-defining branches, so

Fccs = Fccs-initial  ∪   Fpotential.
The architecture-altering operations change the terminal

set, Taps-adf, for each arithmetic-performing subtree, so

Taps-adf = Taps-initial ∪  Tpotential.
During the first phase, there are only two frequencies of

interest (256 Hz and 2,560 Hz); however, in the second
phase, there are three frequencies of interest (750 Hz in
addition to the two just mentioned).  

In the first phase, fitness is computed as follows.  
The procedure for each of the three points that are closest

to the band located within 10% of 256 Hz is as follows: If
the voltage equals the ideal value of 1/3 volts in this

interval, the deviation is 0.0.  If the voltage is more than
166 millivolts from 1/3 volts, the absolute value of the
deviation from 1/3 volts is weighted by a factor of 20.  If
the voltage is more than 166 millivolts from 1/3 volts, the
absolute value of the deviation from 1/3 volts is weighted
by a factor of 200.  

The procedure for each of the three points that are closest
to the band located within 10% of 2,560 is as follows: If the
voltage equals the ideal value of 1 volt in this interval, the
deviation is 0.0.  If the voltage is within 166 millivolts of 1
volt, the absolute value of the deviation from 1 volt is
weighted by a factor of 20.  If the voltage is more than 166
millivolts from 1 volt, the absolute value of the deviation
from 1 volt is weighted by a factor of 200.  

The procedure for each of the remaining 95 points is as
follows:  If the voltage equals the ideal value of 0 volts, the
deviation is 0.0.  If the voltage is within 166 millivolts of 0
volts, the absolute value of the deviation from 0 volts is
weighted by a factor of 1.0.  If the voltage is more than 166
millivolts from  0 volts, the absolute value of the deviation
from 0 volt is weighted by a factor of 10.  

Greater weights (20 and 200) were used in the two
passbands because they contain only 6 of the 101 points.  

In the second phase, there is a source with a frequency of
around 750 Hz.  

The procedure for each of the three points that are closest
to the band located within 10% of 750 Hz is as follows: If
the voltage equals the ideal value of 2/3 volts in this
interval, the deviation is 0.0.  If the voltage is more than
166 millivolts from 2/3 volts, the absolute value of the
deviation from 2/3 volts is weighted by a factor of 15.  If
the voltage is more than 166 mV of 2/3 volts, the absolute
value of the deviation from 2/3 volts is weighted by 150.   

In the second phase, the procedure for the six points
nearest 256 Hz and 2,560 Hz are the same as above, except
that the weight is 15 and 150 (instead of 20 and 200),
respectively for the complaint and non-complaint points.
Lesser weights (15 and 150) were used in the three passbands
because 9 of the 101 points lie in the passbands.  

In the second phase, the procedure for each of the
remaining 92 points is as follows:  If the voltage equals the
ideal value of 0 volts, the deviation is 0.0.  If the voltage is
within 166 millivolts of 0 volts, the absolute value of the
deviation from 0 volts is weighted by a factor of 1.0.  If the
voltage is more than 166 mV from 0 volts, the absolute
value of the deviation from 0 is weighted by a factor of 10.  

The control parameters were the same as above, except
for the following: The architecture-altering operations were
used sparingly on each generation.  The percentage of
operations on each generation after generation 5 were 86.5%
one-offspring crossovers; 10% reproductions; 1% mutations;
1% branch duplications; 0.5% branch deletions; and 1%
branch creations.   Since we did not want to waste large
amounts of computer time in early generations where only a
few programs have any automatically functions at all, the
percentage of operations on each generation before
generation 6 was 78.0% one-offspring crossovers; 10%
reproductions; 1% mutations; 5.0% branch duplications; 1%
branch deletions; and 5.0% branch creations.  The maximum
size, Hrpb, for the result-producing branch was 600 points.



The maximum number of automatically defined functions
was 2.  The number of arguments for each automatically
defined function is 1.  The maximum size, Hadf, for each of
the automatically defined functions, if any, is 300 points.

6 . Results with the Changing
Environment

The best circuit from generation 0 (figure 11) has a fitness
of 200246.8 and 68 hits.  Figure 14 shows its behavior.  

The best circuit from generation 41 achieves a fitness of
200015.5 and 100 hits.  It has 12 inductors, 13 capacitors,
and two resistors (in addition to the source and load resistors
in the embryo).   Because of the action of the architecture-
altering operations, there is one automatically defined
function in the program tree for this circuit.   ADF0 is
invoked three times by the result-producing branch.  Figure
8 shows the best circuit from generation 41 before the three
occurrences of ADF0 are expanded.

Figure 8  Best circuit from generation 41 before
expanding the three occurrences of ADF0 .  ADF0
develops differently in different contexts.  In figure 9, ADF0
develops into one 326 nF capacitor in two instances (labeled
ADF0-1 and ADF0-2 in figure 8).   

Figure 9  Result of developing ADF0-1  and
ADF0-2  for the best circuit from generation 4 1 .
As shown in figure 10, ADF0 develops into two inductors
and three capacitors in the third instance (labeled  ADF0-3
in figure 8).

Figure 10  Result of developing ADF0  for the
best circuit from generation 41. Figure 12 shows

the best circuit from generation 41 after expanding the three
occurrences of ADF0.  Figure 15 shows the behavior of the
best circuit of generation 41 in the frequency domain.
Notice the emergence of two distinct peaks around 256 Hz
and 2,560 Hz.  

The best circuit (figure 13) from generation 85 achieves a
fitness of 404.3.  It scores a total of 199 hits, including all
101 hits possible from the first phase.  It has 23 inductors,
20 capacitors, and five resistors (in addition to the source and
load resistors in the embryo).   ADF0 is invoked twice.
Figure 13 shows the best circuit from generation 85 after
expanding its two automatically defined functions, ADF0
and ADF1.  Figure 16 shows the behavior of the best circuit
of generation 85 in the frequency domain.  

7 . Computer Time
The run for the three-way frequency discriminator described
above took 43 hours and processed about 67,840,000
individuals through the SPICE simulation and the other
steps.  The 64 80 MHertz processors operate together at a
combined rate of 5.12 giga Hertz, so that there were about 8

× 1014 clock cycles in the run.  The run for the changing
environment described above took about 48 hours (about 9 ×
1014 clock cycles).  We make the rough approximation of
one clock cycle to one computer operation and round off

both of the above numbers to 1015 operations.

Noting that the human brain has about  1012 neurons
operating at an approximately millisecond rate, we designate

the gross quantity of 1015 operations as a brain second (1
bs) of computer operations.  Thus, both versions of the
source identification problem used about one brain second
(i.e., a petaflop of operations spread over two days, instead
of one second) to produce a satisfactory circuit.  However, as
described in Enabling Technologies for Petaflops
Computing (Sterling, Messina, and Smith 1995), the era of

petaflops computing (in which 1015 operations are
performed in one second) is imminent.  

Interestingly, six other problems solved with genetic
programming and one other solved with another
evolutionary algorithm have required approximately one
brain second to produce a result that is arguably competitive
with the result produced by humans on the same problem.

Approximately 1 brain second was required to evolve a
one-dimensional cellular automata rule for the majority
classification task whose accuracy (82.326%) exceeds that of
the original 1978 human-written Gacs-Kurdyumov-Levin
(GKL) rule, all other known subsequent human-written
rules, and all other  known rules produced by automated
approaches for this problem (Andre, Bennett, and Koza
1996).  

Also, the performance of four different versions of
genetic programming (Koza 1994a, Koza and Andre 1996a,
1996b) on the transmembrane segment identification
problem is slightly superior to that of algorithms written by
knowledgeable human investigators.  Approximately 1 brain
second was required to produce each of these four results.



Figure 11  Best circuit from generation 0 .

Figure 12  Best circuit from generation 41 after
expanding the three occurrences of ADF0 .

Figure 13  Best circuit from generation 85 after
expanding its automatically defined functions.  

In addition, approximately 1 brain second of
computational effort was required for the runs of genetic
programming that successfully evolved protein motifs for
detecting the D-E-A-D box family of proteins and for
detecting the manganese superoxide dismutase family as well
or better than the comparable human-written motifs found in
the PROSITE database (Koza and Andre 1996c).  

Juille's discovery (1995), using evolutionary
computation, of a sorting network for 13 items that was
smaller than the best network in Knuth (1973) consumed
approximately 0.8 brain seconds (Juillie 1997).    

Figure 14  Frequency domain behavior of the
best circuit of generation 0 .

Figure 15 Frequency domain behavior of the best
circuit of generation 4 1 .  

Figure 16 Frequency domain behavior of the best
circuit of generation 85.   8 .

Conclusion
Genetic programming successfully evolved both the
topology and the sizing for an analog electrical circuit that
can perform source identification by correctly classifying an
incoming analog electrical signal into three categories.
Then, as the repertoire of sources was dynamically changed
during the run, architecture-altering operations enabled
genetic programming to adapt to a changed environment
dynamically during a run.  Specifically, a three-way source
identification circuit was evolved and then adapted, during
the run, to successfully handle the additional source.
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