
Linking usability to software architecture patterns
through general scenarios

Len Bass a,*, Bonnie E. John b,1

a Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
b Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received 9 January 2002; received in revised form 9 April 2002; accepted 26 April 2002

Abstract

Usability is an important quality attribute to be considered during software architecture design. Up to this point, usability has

been served only by separating a system�s user interface from its functionality to support iterative design. However, this has the effect

of pushing revisions to achieve usability toward the end of the software development life cycle. Many usability benefits link directly to

a variety of architectural tactics in addition to separation of the user interface and these benefits can be discovered early in the life

cycle. For each of 27 scenarios, we identified potential usability benefits a user could realize and an architectural pattern that supports

achievement of those benefits. We organized the scenarios into an emergent hierarchy of potential benefits to the user and into an

emergent hierarchy of architectural tactics used in the supporting patterns. The range of architectural tactics identified in this hi-

erarchy demonstrates that separation is far from the only architectural tactic necessary to support usability. We present techniques

that permit important usability issues to be addressed proactively at architecture design time instead of retroactively after user testing.

� 2002 Elsevier Science Inc. All rights reserved.

Keywords: Usability; Software architecture; Software patterns; Scenarios

1. Introduction

Stakeholders recognize that usability is important for

most interactive systems. In the past 20 years, a sub-
stantial amount of research has gone into supporting the

detailed design of the user interface (UI). Supporting

usability concerns by constructs of software architecture

has also been an avenue of research since the 1980s.

Architectural patterns such as the model view controller

(MVC) and presentation–abstraction-control (PAC)

(Buschmann et al., 1996) have been developed to sim-

plify the modification of the detailed UI design. The
area of User Interface Management Systems (UIMSs)

(Pfaff, 1983) had as its goal simplifying the construction

of the UI and, consequently, improving the ability to

perform iterative development.

Implicit in these methods and their focus on iterative

development, is the assumption that getting the details

of the UI correct is equivalent to making a system us-

able. This assumption implies that being able to modify
aspects of the UI such as menu structure, dialog boxes,

and the content and presentation of information to the

user, in the face of usability analyses or data, is the

primary path to producing a usable system. From an

architectural point of view, it turns usability concerns

into modifiability concerns. Separation of the UI from

the functionality of the system is sufficient to support

modifiability. However, having a good UI is only one
aspect of producing a usable system. Giving the user the

ability to perform ‘‘undo’’, for example, is also impor-

tant for usability and one that is not tied to the design of

the UI (except for providing the facility for invoking the

undo command) or supported by separation.

There has been little research on software architec-

tural support for those aspects of usability that are not

connected with iterative development and design of
the UI. We present an initial investigation into devel-

oping software architectural support for those neglected

*Corresponding author. Tel.: +1-412-268-6763; fax: +1-412-268-

5758.

E-mail addresses: ljb@sei.cmu.edu (L. Bass), bej@cs.cmu.edu

(B.E. John).
1 Tel.: +1-412-268-7182.

0164-1212/03/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0164-1212(02)00076-6

The Journal of Systems and Software 66 (2003) 187–197

www.elsevier.com/locate/jss

mail to: ljb@sei.cmu.edu


aspects of usability. Our approach is to identify a col-

lection of usability scenarios that involve more than

detailed design of the UI and have architectural im-

pact beyond separation in support of modifiability. We

present software architectural patterns in the sense of

Buschmann that will achieve the scenarios. The exis-
tence of the scenarios acts as a checklist for both the

software designer and the usability engineer so they can

discuss the desirability of achieving the scenario in a

particular system. The suggested pattern provides the

software engineer with a basis to estimate the effort

(cost) involved in realizing the scenario.

We begin by exploring in more detail our assertion

that the basis for the existing work on the connection
between usability and software architecture is support-

ing iterative development. We then present our ap-

proach in terms of scenarios and architectural patterns

to achieve the scenarios. We describe how we developed

two hierarchies based on the scenarios and the patterns

and give an example of using these hierarchies in prac-

tice. We close by discussing the limitations of the work

we present here and give areas for future work.

1.1. Prior work

1.1.1. Software architectural patterns and user interface

reference models

During the 1980s and into the early 1990s, both

practitioners and researchers developed a collection of

UI reference models (software architectural patterns in
today�s jargon). Beginning with MVC and the Seeheim

Model these models evolved over time to a common

basis. See Chapter 6 of (Bass et al., 1998) for a discus-

sion of these models and their evolution. The one ele-

ment all of these models have in common is the

separation of the UI from the remainder of the appli-

cation (the core functionality). Separation of concerns is

a basic engineering technique that divides problems into
distinct sub-problems with minimal overlap. The smaller

sub-problems are, presumably, easier to solve and the

fact there is minimal overlap enables integrating the

solution of the parts into a solution of the whole.

Making the overlap minimal is the key to making sep-

aration of concerns successful. In the software engi-

neering world, separation is done in order to make

modifications to each of the smaller portions easier.
Modification of the UI is the essence of iterative devel-

opment. An interface is developed, the interface is

analyzed and tested with users, modifications are dis-

covered and made, and this process is expedited by

separating the UI.

In 1992, the state of the practice was summarized

thus:

A common approach for developing such models

(MVC, PAC, and others) is to examine the func-

tionality of an interactive system, decide that sepa-

rating the UI functionality from other functionality

is the most important design goal, and derive an

architecture that supports this separation. (UIMS

Developers Workshop, 1992, p. 32.)

It is worth noting that these models are UI reference

models. No one claimed that these models solved the

problems of usability that were not tied to the UI.

Nielsen (Nielsen, 1993) is an example of an author who

discusses the non-UI aspects of usability but he (and the

others) do so without discussing any implementation

considerations.

Since the software architecture is the artifact that
embodies the earliest design decisions, it is very difficult

to modify once designed. Our search is to find those

aspects of usability that affect the software architecture

once the UI has been separated from the remainder of

the system. These are the aspects of usability difficult to

instill into the system if their absence has been discov-

ered during the iterative design process.

1.1.2. User interface management systems and user

interface development environments

UIMSs were systems predicated on separating the UI

from the functional core that were developed in parallel

with the architectural patterns just discussed. They

usually consisted of a UI builder or specification lan-

guage together with a run-time infrastructure that sup-
ported the integration with the functional core and the

incorporation of the UI specified through the builder or

specification language. A special case of UIMS research

investigated User Interface Development Environments

(UIDEs) (Foley et al., 1991). UIDEs attempted to build

a model of the UI and use this model to construct the

instance of the UI relevant in particular contexts. They

extended UIMSs in terms of the support for the con-
struction process and the run time support for the UI

but were identical in terms of the basic underlying ar-

chitecture.

UIMSs were based on the assumption that the run-

time infrastructure captured all of the common aspects

of the UI and the UI specification captured all of the

variable aspects. They also were based on separation of

the UI as we have discussed above.
By assuming that all of the commonalities of a good

UI were captured in a run-time infrastructure, UIMSs

assumed that there was one basic solution that all good

UIs exhibit.

We do not believe this. In our search for scenarios, we

were very careful to avoid the ‘‘one-size-fits-all’’ phe-

nomena. That is, when we have two similar scenarios,

we kept them separate as long as the solutions were
distinct rather than attempting to combine the scenarios

and their solutions. Our belief is that software designers

188 L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197



are capable of combining distinct patterns and as long as

a possibility exists that not all systems will, by necessity,

implement both scenarios we kept the scenarios distinct.

1.2. Our approach

With this background, our approach is as follows:

1. We identified a collection of scenarios. We identified

this collection through a search of the literature,

through discussions with colleagues, and through

personal experience. The collection has the following

characteristics.

(a) The scenarios are common to many interactive
software systems. By necessity, these scenarios

are not related to the domain functionality of

any one system.

(b) The scenarios are architecturally significant. By

this we mean that the solution to each scenario

affects the functional core in a software architec-

tural pattern based on separation of the UI.

(c) The scenarios are distinct either with respect to
their subject or their solution.

2. Each scenario has an architectural pattern that pro-

vides a solution to implementing the scenario. We

do not claim that the pattern provided is the only so-

lution, or even the best solution for every system,

but that it is one possible solution to consider.

3. We organized the scenarios into a hierarchy based

on the benefits to the user from realizing the sce-
nario.

4. We organized the patterns into a hierarchy based on

the software architectural ‘‘tactics’’ used within the

pattern. Tactics is a coined word in this context

and we discuss its use in a subsequent section.

We now discuss our scenarios in more detail.

2. General usability scenarios

Quality scenarios have been widely used both in an-

alyzing for software architectures (Clements et al., 2001)

and for designing software architectures (Bass et al.,

2001b). Our first step in investigating the relationship
between usability and software architecture was to

generate scenarios that expressed a general usability

issue and seemed to have architectural implications. For

example, a common usability scenario is that a user

changes his or her mind about issuing a command and

wants to cancel that command before it has completed.

This is generally applicable to many software systems

and has architectural implications because the system
must be attentive to the cancel command and be able to

restore state.

We generated scenarios in several ways. We read

several standard HCI textbooks and used their examples

and definitions of usability to inspire scenarios (e.g.

(Gram and Cockton, 1996; Newman and Lamming,

1995; Nielsen, 1993; Shneiderman, 1998)). We generated

scenarios from our own experiences. We discussed sce-
narios with colleagues and we literally asked people we

sat next to on busses ‘‘have you had any problems with

computers lately?’’ Thus, the initial generation process

was not systematic or comprehensive, but it was suffi-

cient to produce substantial evidence that the link be-

tween usability benefits and software architecture is

much deeper than simple separation of UI from core

functionality. The full set of scenarios that we are cur-
rently considering can be found in Appendix A.

2.1. Software architectural patterns

For each scenario we generated a software architec-

tural (SA) pattern to achieve a solution to the scenario.

The SA patterns are described fully in (Bass et al.,

Fig. 1. Module view of the pattern for the cancellation scenario.

L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197 189



2001a) for those who wish more details than we are able

to present here. Our goal in presenting these patterns

was to avoid a one-size-fits-all solution and provide only

a minimum solution for the particular scenario at hand.

One of the reasons for the failure of the UIMS research

cited earlier was the attempt by its proponents to solve
all of the usability problems that a system might ever

have. This made the UIMSs inherently cumbersome and

unattractive to developers.

Fig. 1 shows a module view of the SA pattern for the

cancellation scenario. The key to this pattern is that a

component cannot be responsible for managing its own

cancellation because it may be blocked when the cancel

command is issued. Hence, there is a listener component
that is always listening for the user to issue the cancel

command and a Cancellation Controller that is re-

sponsible for actually performing the cancellation and

cleaning up after the component that is being cancelled.

3. Classifying the scenarios

After generating about two dozen scenarios, we

classified them in two ways. We first looked at all the

scenarios from the point of view of what usability ben-

efits could be delivered to a user if a good solution to the

scenario were implemented and then we looked at the

scenarios from the point of view of classifying the ar-

chitectural patterns. In both of these cases we used a

bottom-up process called affinity diagrams (Beyer and
Holtzblatt, 1998). We now discuss these two classifica-

tions.

3.1. Usability classification

We classified the scenarios from the bottom up rather

than starting with an existing definition of usability and

sorting the scenarios into it, because it was not clear that

architecturally sensitive scenarios would cover the typi-

cal range of usability benefits. However, the resulting

hierarchy, shown in Fig. 2, is similar to organizations of

usability given by other authors (e.g. Newman and

Lamming, 1995; Nielsen, 1993; Shneiderman, 1998),
encompassing benefits of efficiency, problem-solving

and learnability, and user satisfaction. One item in the

hierarchy that differs from other authors� characteriza-
tions is reducing the impact of system errors. Several

scenarios highlighted the inevitable occurrence of system

errors (e.g., networks going down, systems crashing). A

carefully designed architecture can mitigate the damage

of such errors to the users� work. Each scenario occurs
in one or more positions in the hierarchy; the rationale

for each assignment can be found in (Bass et al., 2001a).

We provide the rationales for the canceling command

scenario in Fig. 3.

3.2. Software architectural pattern classification

After completing the affinity diagram from the point
of view of usability benefits, we began again with the

unordered set of scenarios and did another affinity dia-

gram to uncover similarities in the SA patterns for im-

plementing a good solution to these scenarios.

When examining the original set of scenarios from

this point of view, we sometimes found that a scenario

had no substantive implications for the architecture of

the system and we removed it from further consider-
ation. This examination also revealed that some sce-

narios should be split in two because different SA

patterns highlighted different aspects of a scenario, and,

conversely, that some scenarios should be merged into

one because their SA patterns were identical.

The bottom-up classification process found similari-

ties in what we call ‘‘architectural tactics’’ inherent in the

Fig. 2. Usability benefits hierarchy.

190 L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197



SA patterns. These tactics are widely used software en-

gineering approaches either for structuring systems or

for managing the execution of systems. Examples of our

architectural tactics include ‘‘separation’’ and ‘‘replica-

tion’’. A particular pattern will provide an implemen-
tation of one or more tactics. For example, the pattern

proposed to satisfy the cancellation scenario uses the

tactic of ‘‘pre-emptive scheduling’’ so that the listener

component can respond to the request for cancellation

as well as the tactic of ‘‘recording’’ so that the cancel-

lation component can restore the system to its state

prior to the invocation of the command that was can-

celled.

Fig. 4 shows the hierarchy that resulted from the

bottom up classification process. We cannot compare

this to similar software architecture hierarchies because,
to our knowledge, no comparable hierarchies exist.

The bulk of this hierarchy should be of no surprise to

software engineers, as this hierarchy contains many fa-

miliar tactics: various forms of separation, replication,

indirection, etc. However, the fact that these tactics have

implications for the usability of the system may be

surprising. This range of tactics belies the assumption

that separating the UI from the core functionality is
sufficient to support usability at architecture-design

time. Clearly, other tactics must be in place in the ar-

chitecture if a usable product is to be delivered to the

customer.

As with the benefits hierarchy, the affinity process

produced one unusual item in the hierarchy, the notion

of models. To provide good solutions to several sce-

narios, the system should include a model of the task
(e.g., a spell-checker in a word-processor can use the

frequency of occurrence of words in the language to

order suggestions), the user (a spell-checker can also use

the most common typing errors, e.g., transposition of

characters), and sometimes of the system itself (e.g.,

progress bars need to ‘‘model’’ the functioning of the

system to estimate time to completion).

Each SA pattern uses one or more architectural tac-
tics. The rationale for the assignment of tactics to SA

patterns can be found in Bass et al. (2001a). An illus-

tration of the rationale for the canceling command is

given in Fig. 5.

Fig. 3. Allocation of cancel command to benefit hierarchy.

Fig. 4. Software architectural tactics hierarchy.

L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197 191



4. The benefit/tactic matrix

With each scenario categorized into what usability

benefits a good solution has the potential to deliver and

what architectural tactics are required to implement a

good solution, we constructed a two-dimensional matrix

of benefit by tactic (Fig. 6).

The matrix can be used by a design team to evaluate

or design an architecture in three ways. First, the team

may decide that a particular scenario is important to the
design goals of their product. They may identify im-

portant scenarios from examining our list directly, from

performing a Heuristic Evaluation (e.g., Nielsen�s heu-

ristic of providing ‘‘emergency exits’’ maps to our can-

cellation scenario (Nielsen and Mack, 1994)), or from

other scenario-based design techniques that may pro-

duce specific scenarios analogous to our general ones.

The team can then go into the matrix and find the cells
occupied by that scenario. From the scenario�s positions
in the matrix, the design team can understand the po-

tential benefits to the user and understand the tactics

necessary to include in the SA in order to achieve those

benefits. Thus, our list of scenarios differs from check-

lists or heuristics in other HCI literature because they

not only raise consciousness about what scenarios

should be supported (e.g., ‘‘provide undo’’), but also
supply guidance as to how to implement a good solution

to each scenario. Second, the design team can use the

matrix by identifying which usability benefits are most

important in their situation. For example, if they are

designing a walk-up-and-use information kiosk then

supporting problem solving or learning may be more

important than efficiency. Alternatively, if the team is

designing a specialized information system for well-
trained, long-term users, they may value efficiency over

learnability. The team can then examine only those

scenarios that appear in the columns populated by the

valued benefits. They then translate our general sce-

narios into specific scenarios for their system and follow

the rows to specific architectural tactics to implement

solutions to those scenarios.

Finally, if an architecture is already proposed, the
design team can enter the matrix at the rows that contain

the tactics in that architecture. By examining the sce-

narios in that row, they may discover additional sce-

narios that could be solved with little additional effort,
thereby accruing additional usability benefits for their

users. This last method for using the matrix is more

speculative than the first two because if a tactic exists in

service of a particular scenario, there is no guarantee that

the same implementation of that tactic will serve another

scenario. For example, if one component records state to

allow easy evaluation of a system, it is not necessarily the

same recording needed to support cancellation or undo.
However, we anticipate that thinking about architectural

tactics in a systematic way through the matrix will fa-

cilitate the team asking relevant questions at architec-

ture-design time and making informed decisions about

relative benefits and costs of architectural design deci-

sions. Furthermore, one of our applications of this work

provides evidence that having tactics to support one

scenario facilitates the supporting of another. We discuss
this application in the next section.

An important point about the benefit/tactic matrix is

its density. If the matrix were very sparse, any particular

usability benefit could be mapped to a single tactic and a

list of benefit/tactic tuples would be sufficient to capture

architectural design knowledge. If the matrix were very

dense, then a single complex architecture could be de-

signed once that would solve all usability problems for
future systems. This, indeed was the philosophy behind

UIMSs, but was resisted by practicing developers as too

cumbersome. In reality, the matrix is neither particularly

sparse nor particularly dense. This means that providing

a solution to most scenarios promises more than one

usability benefit (22 out of 27), but that few scenarios

can be solved with only one architectural tactic (6 out of

27). The number of tactics required to implement a so-
lution to a scenario ranges from 1 to 5, with an average

of 2.3. Therefore, the benefit/tactic matrix indicates that

developers� resistance to UIMSs was probably justified

because not every usability problem requires all archi-

tectural tactics. Thus, the number of decisions about

architectural design to produce a usable system is far

greater than simply separating the UIfrom the function-

ality. It requires customization of the architecture for
each design situation, with guidance embodied in archi-

tecture patterns, but the potential rewards are also great.

Fig. 5. Architectural tactics found in the software architectural pattern that provides a solution to canceling commands.

192 L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197



5. Uses in practice

The SEI has both design and evaluation methods that

are based on understanding the relationship between the

achievement of desired quality attributes and SA. Tra-

ditional quality attributes in architecture design are
attributes like performance, security, and availability.

Both design and evaluation methods have steps that

require the generation of scenarios that characterize

quality requirements for the system under consideration.

Since quality attribute scenarios are already an essential

portion of these methods, including usability into the

methods via the scenarios listed here was easily accom-

plished.
We now describe our application of these results to

an application of ATAM (Architecture Tradeoff Anal-

ysis Method, Clements et al., 2001) to a large commer-

cial information system. The designers of this system

had involved professional usability engineers in the de-

sign but still our results were able to assist them.

One of the scenarios generated during the ATAM

mapped to our usability scenario 22 (Working in an

unfamiliar context). The particular ATAM scenario in-

volved a helper at a central site who was called by a
remote user having a problem using a customized in-

terface. The problem, then, became, how can the helper

see the same interface that the remote user sees in order

to provide assistance?

The system under discussion supported multiple

languages (our scenario 12). Fig. 7 shows the central

server and the client machines. Observe in the benefit/

tactic matrix that both scenarios utilize the tactic ‘‘sep-
arate data from the view of that data’’. Within the

architecture being reviewed for the ATAM, the de-

scription of the view of the data was ‘‘pushed’’ every

night from the server to the client machine. The solution

Fig. 6. Matrix linking potential usability benefits to software architectural tactics through 27 usability scenarios (named in the Key). More infor-

mation on usability general scenarios and their assignment to cells in the matrix can be found in [4].

L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197 193



to implementing scenario 22 lay in the recognition that

the description of the data being used by the person

needing helping must be made available to the helper.

By adding a ‘‘pull’’ feature for the helper, the profile for

the user who had requested assistance could be loaded

onto the helper�s machine and the helper could see the

same interface as the person requesting help. Thus, the

matrix led to examination of the existing design to de-
termine how the description of the data was made

available to the user. This, in turn, led to a realization

that the getting that description to the helper was the

key to solving the problem. The matrix was the place

where the connection between scenarios 12 and 22 was

made.

6. Future work

This work is by no means complete. There are a

number of activities that remain to be done to simplify

the support of usability at the software architecture

design stage of a system. These activities include the

following.

Validating the usefulness and generality of our sce-

narios and quantifying the value of the potential benefits

to users. This is a general goal for many HCI evaluation

and design methods and is no less important in under-

standing the link between architecture and usability.

Fleshing out these scenarios and architectural solutions

into usable HCI ‘‘patterns’’ similar to those in other

disciplines and previous software engineering work (e.g.,

architecture (Alexander et al., 1977); object-oriented
software (Gamma et al., 1995); software architecture

(Buschmann et al., 1996); interactive music exhibit de-

sign (Borchers, 2001)). The cancellation scenario has

been so expanded and summarized in (Bass and John,

2000).

Extending the list of general usability scenarios. We

explicitly limited our attention to single-user desktop

systems and make no claims about completeness of our
scenario list. If possible, a more systematic approach to

scenario generation should be developed to ensure

coverage. But even without a systematic method, the set

of scenarios should be extended to include other inter-

action paradigms like mobile and ubiquitous computers

and multi-user environments. Although many of the

general scenarios presented here will be applicable to

other paradigms, these environments are likely to in-
troduce their own additional usability requirements.

Understanding the effect on other attributes of usability

architectural patterns. In order for a software architect

to adopt a particular architectural pattern to support

usability, the effect of this pattern on other quality at-

tributes such as performance, modifiability, security and

reliability should be understood. Each quality attribute

community has its own analysis techniques. When a
designer has to make a trade-off between, for example,

performance and security, the designer will hypothesize

a particular solution, analyze it for its security charac-

teristics using security analysis techniques, analyze it for

its performance characteristics using performance anal-

ysis techniques, and decide whether the hypothesized

solution is acceptable. If it is not, another solution will

be hypothesized and the process is repeated. If this
process does not converge, then the definition of ‘‘ac-

ceptable’’ solution is changed so that one of the hy-

pothesized solutions is acceptable.

It is no different when considering usability and se-

curity instead of performance and security. The designer

chooses one of our scenarios, includes the associated

pattern in the solution hypothesis and analyzes the re-

sult for its security characteristics using security analysis
techniques. If the solution is not acceptable, another

solution is hypothesized and the process is repeated.

Thus, usability plays a role in the design process ex-

actly analogous to that played by the other quality at-

tributes and trade-offs between usability and other

quality attributes are handled using exactly the same

process as trade-offs among other quality attributes.

Ongoing work at the SEI is examining the relationships
between all quality attributes, including usability.

Use the matrix, scenarios, and architectural patterns in

a variety of real-world design situations. Our initial ven-

tures into the real world of design have been encour-

aging, but additional applications of the information to

design will prove the usefulness and usability of the

method itself.

In particular, one potential problem with the use of
general scenarios is the necessity for the software engi-

neer and the usability engineer to make them system

Fig. 7. System that supported internationalization via pushing user

profiles modified to support working in an unfamiliar context via

adding a pull feature.

194 L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197



specific. That is, Scenario 2 refers to the aggregation of

commands. It is couched in terms ‘‘the user wishes to

perform a multi-step procedure repetitively’’. In partic-

ular domains, this scenario will appear in quite different

forms. An example in the automotive domain is the use

of ‘‘one button customization’’. That is, pushing one
button on a remote control will unlock the door, adjust

the seat and mirror to your desired settings as well as set

the radio volume and pre-set stations to be the ones you

prefer. How is the usability engineer or the software

architect to make this translation?

We have no definitive answer at this point, but we can

cite our experience in several different settings.

We have presented this material at two masters-level
classes and an ACM tutorial for professionals in both

Software Engineering and Human Computer Interac-

tion. In each case, we asked the attendees to consider

several scenarios and apply them to domains with which

they had experience. In every case, the people volun-

teering answers were able to generate scenarios within

their domain that were indeed concrete examples of our

general scenarios.
Future work should include a more systematic pro-

cess to generate system specific scenarios but our expe-

rience in the classroom supports the belief that the

generation of system specific scenarios is not an insur-

mountable barrier to applying this work.

7. Conclusions

Our major conclusion is that the link between SA and

usability is much deeper than simply employing sepa-

ration for easy modification of the UI. We have offered a

collection of general usability scenarios that require ar-

chitectural support beyond separation as evidence for

this conclusion.

Given our use of the general scenarios and benefit/
tactic matrix in architecture design and analysis pro-

cesses, we further conclude that the scenarios, their ar-

chitectural patterns, and the matrix, are promising tools

to improve the development of real systems. Although

supporting usability aspects through architectural de-

sign does not guarantee a usable system––too many

implementation decisions must also be made before the

system reaches the end user––at least early architectural
design decisions can be made that will not preclude de-

livering a usable system.

Our goal is for software design decisions to be made

explicitly in light of all of the consequences of those

decisions. In particular, we want to ensure that the us-

ability consequences of design decisions are understood

before it is too late in the life cycle of the system to re-

pair mistaken decisions. We believe the patterns linking
usability benefits to SA is the first step towards that

goal.

Acknowledgements

This work resulted from a period when Bonnie John

was on leave from Carnegie Mellon�s HCI Institute

and working at the SEI. We would like to thank the

HCI Institute for granting that leave, and the SEI, in
particular Steve Cross and Linda Northrop, for sup-

porting it.

We also wish to acknowledge support through the

High Dependability Computing Program from NASA

Ames cooperative agreement NCC-2-1298 and the

United States Department of Defense through its

sponsorship of the Software Engineering Institute.

Appendix A. General usability scenarios

This section enumerates the usability scenarios that

we have identified as being architecturally sensitive. A

general usability scenario describes an interaction that

some stakeholder (e.g., end user, developer, system ad-

ministrator) has with the system under consideration

from a usability point of view.

1. Aggregating data. A user may want to perform one
or more actions on more than one object. Systems

should allow users to select and act upon arbitrary

combinations of data.

2. Aggregating commands. A user wishes to perform a

multi-step procedure repetitively. Systems should

provide a batch or macro capability to allow users

to aggregate commands.

3. Canceling commands. A user invokes an operation,
then no longer wants the operation to be performed.

Systems should allow users to cancel operations.

4. Using applications concurrently. A user may want to

work with arbitrary combinations of applications

concurrently. These applications may interfere with

each other. Systems should ensure that users can em-

ploy multiple applications concurrently without con-

flict.
5. Checking for correctness. A user may make an error

that he or she does not notice. However, human er-

ror is frequently circumscribed by the structure of

the system; the nature of the task at hand, and by

predictable perceptual, cognitive, and motor limita-

tions. Depending on context, error correction can

be enforced directly (e.g., automatic text replace-

ment, fields that only accept numbers) or suggested
through system prompts.

6. Maintaining device independence. A user attempts to

install a new device. The device may conflict with

other devices already present in the system. Alterna-

tively, the device may not function in certain specific

applications. When device conflicts occur, the sys-

tem should provide the information necessary to

L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197 195



either solve the problem or seek assistance. (Devices

include printers, storage/media, and I/O apparatus.)

7. Evaluating the system. A system designer or admin-

istrator may be unable to test a system for robust-

ness, correctness, or usability in a systematic

fashion. Systems should include test points and data
gathering capabilities to facilitate evaluation.

8. Recovering from failure. A system may suddenly stop

functioning while a user is working. Users should be

provided with the means to reduce the amount of

work lost from system failures.

9. Retrieving forgotten passwords. A user may forget a

password. Retrieving and/or changing it may be dif-

ficult or may cause lapses in security. Systems should
provide alternative, secure strategies to grant users

access.

10. Providing good help. A user needs help. The user may

find, however, that a system�s help procedures do

not adapt adequately to the context. Help content

may also lack the depth of information required to

address the user�s problem. Help procedures should

be context dependent and sufficiently complete to as-
sist users in solving problems.

11. Reusing information. A user may wish to move data

from one part of a system to another. Users should

be provided with automatic (e.g., data propagation)

or manual (e.g., cut and paste) data transports be-

tween different parts of a system.

12. Supporting international use. A user may want to

configure an application to communicate in his or
her language or according to the norms of his or

her culture. Systems should be easily configurable

for deployment in multiple cultures.

13. Leveraging human knowledge. People use what they

already know when approaching new situations.

Such situations may include using new applications

on a familiar platform, a new version of a familiar

application, or a new product in an established
product line. System designers should strive to de-

velop upgrades that leverage users� knowledge of

prior systems and allow them to move quickly and

efficiently to the new system.

14. Modifying interfaces. Iterative design is the lifeblood

of current software development practice, yet a sys-

tem developer may find it prohibitively difficult to

change the UI of an application to reflect new func-
tions and/or new presentation desires. System de-

signers should ensure that their UIs can be easily

modified.

15. Supporting multiple activities. Users often need to

work on multiple tasks more or less simultaneously

(e.g., check mail and write a paper). A system or

its applications should allow the user to switch

quickly back and forth between these tasks.
16. Navigating within a single view. A user may want to

navigate from data visible on-screen to data not cur-

rently displayed. If the system takes too long to dis-

play the new data or if the user must execute a

cumbersome command sequence to arrive at her or

his destination, the user�s time will be wasted. Sys-

tem designers should strive to ensure that users can

navigate within a view easily and attempt to keep
wait times reasonably short.

17. Observing system state. A user may not be presented

with the system state data necessary to operate the

system (e.g., uninformative error messages, no file

size given for folders). Alternatively, the system state

may be presented in a way that violates human tol-

erances (e.g., is presented too quickly for people to

read. See: Working at the user�s pace). The system
state may also be presented in an unclear fashion,

thereby confusing the user. System designers should

account for human needs and capabilities when de-

ciding what aspects of system state to display and

how to present them.

18. Working at the user’s pace. A system might not ac-

commodate a user�s pace in performing an opera-

tion. This may make the user feel hurried or
frustrated. Systems should account for human needs

and capabilities when pacing the stages in an interac-

tion. Systems should also allow users to adjust this

pace as needed.

19. Predicting task duration. A user may want to work

on another task while a system completes a long run-

ning operation. If systems do not provide expected

task durations, users will be unable to make in-
formed decisions about what to do while the com-

puter ‘‘works.’’ Thus, systems should present

expected task durations.

20. Supporting comprehensive searching. A user wants to

search some files or some aspects of those files for

various types of content. Search capabilities may

be inconsistent across different systems and media,

thereby limiting the user�s opportunity to work. Sys-
tems should allow users to search data in a compre-

hensive and consistent manner by relevant criteria.

21. Supporting undo. A user performs an operation, then

no longer wants the effect of that operation. The sys-

tem should allow the user to return to the state be-

fore that operation was performed. Furthermore, it

is desirable that the user then be able to undo the

prior operation (multi-level undo).
22. Working in an unfamiliar context. A user needs to

work on a problem in a different context. Discrepan-

cies between this new context and the one the user is

accustomed to may interfere with the ability to

work. Systems should provide a novice (verbose) in-

terface to offer guidance to users operating in unfa-

miliar contexts.

23. Verifying resources. An application may fail to verify
that necessary resources exist before beginning an

operation. This failure may cause errors to occur un-

196 L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197



expectedly during execution. Applications should

verify that all necessary resources are available be-

fore beginning an operation.

24. Operating consistently across views. A user may be-

come confused by functional deviations between dif-

ferent views of the same data. Commands that had
been available in one view may become unavailable

in another or may require different access methods.

Systems should make commands available based

on the type and content of a user�s data, rather than
the current view of that data, as long as those oper-

ations make sense in the current view.

25. Making views accessible. Users often want to see

data from other viewpoints. If certain views become
unavailable in certain modes of operation, or if

switching between views is cumbersome, the user�s
ability to gain insight through multiple perspectives

will be constrained.

26. Supporting visualization. A user wishes to see data

from a different viewpoint. Systems should provide

a reasonable set of task-related views to enhance

users� ability to gain additional insight while solving
problems.

27. Supporting personalization. A user wants to work in

a particular configuration of features that the system

provides. The user may want this configuration to

persist over multiple uses of the system (as opposed

to having to set it up each time). Systems should en-

able a user to specify their preferences for features

and provide the possibility for these preferences to
endure.

References

Alexander, C., Ishikawa, S., Silverstein, M., 1977. A Pattern Lan-

guage. Oxford University Press, New York.

Bass, L., Clements, P., Kazman, R., 1998. Software Architecture in

Practice. Addison-Wesley, Reading, MA.

Bass, L.J., John, B.E., 2000. Achieving Usability Through Software

Architectural Styles. Extended Abstracts of CHI, 2000 The Hague,

The Netherlands, 1–6 April 2000 ACM, New York. pp. 502–509.

Bass, L., John, B.E., Kates, J., 2001. Achieving Usability Through

Software Architecture, CMU/SEI-TR-2001-005 Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University. http://

www.sei.cmu.edu/publications/documents/01.reports/01tr005.html.

Bass, L., Klein, M., Bachmann, F., 2001b. Quality Attribute Design

Primitives and the Attribute Driven Design Method. In: Proceed-

ings of the Product Family Engineering, vol. 4. Springer-Verlag,

Berlin.

Beyer, H., Holtzblatt, K., 1998. Contextual Design. Morgan Kauf-

mann Publishers, Inc., San Francisco, CA.

Borchers, J., 2001. A Pattern Approach to Interaction Design. John

Wiley & Sons, Chichester, UK.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.,

1996. Pattern-Oriented Software Architecture––A System of Pat-

terns. John Wiley & Sons, Chichester, UK.

Clements, P., Kazman, R., Klein, M., 2001. Evaluating Software

Architectures: Methods and Case Studies. Addison-Wesley, Read-

ing, MA.

Foley, J., Kim, W.C., Kovacevic, S., Murry, K., 1991. Sullivan, Tyler

(Eds.), UIDE–– An Intelligent User Interface Design Environment

in Intelligent User Interfaces. Addison-Wesley, Reading, MA.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design

Patterns, Elements of Object-Oriented Software. Addison-Wesley,

Reading, MA.

Gram, C., Cockton, G., 1996. Design Principles for Interactive

Systems. Chapman and Hall, London, England.

Newman, W., Lamming, M., 1995. Interactive System Design.

Addison-Wesley Publishing, Wokingham, England.

Nielsen, J., 1993. Usability Engineering. Academic Press Inc., Boston.

Nielsen, J., Mack, R., 1994. Usability Inspection Methods. John Wiley

& Sons, New York.

Pfaff, G.P., 1983. (Ed.) Proceedings of the Workshop on User Interface

Management Systems, 1–3 November 1983, Seeheim, Germany.

Shneiderman, B., 1998. Designing the User Interface, third ed.

Addison-Wesley, Reading, MA.

UIMS Tool Developers Workshop, 1992. A Metamodel for the

Runtime Architecture of an Interactive Systems, SIGCHI Bulletin

January 1992.

Len Bass is an expert in software architecture and architecture design
methods. Author of books on software architecture, documenting
software architecture and developing software for the user interface,
Len consults on large-scale software projects in his role as Senior MTS
on the Architecture Trade-off Analysis Initiative at the Software En-
gineering Institute. His research area is the achievement of various
software quality attributes through software architecture and he is the
developer of software architecture analysis and design methods.

Bonnie E. John is an engineer (B.Engr., The Cooper Union, 1977;
M. Engr. Stanford, 1978) and cognitive psychologist (M.S. Carnegie
Mellon, 1984; Ph.D. Carnegie Mellon, 1988) who has worked both in
industry (Bell Laboratories, 1977-1983) and academe (Carnegie Mel-
lon University, 1988-present). She is an Associate Professor in the
Human-Computer Interaction Institute and the Director of the Mas-
ters Program in HCI. Her research includes human performance
modeling, usability evaluation methods, and the relationship between
usability and software architecture. She consults for many industrial
and government organizations.

L. Bass, B.E. John / The Journal of Systems and Software 66 (2003) 187–197 197

http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html
http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

	Linking usability to software architecture patterns through general scenarios
	Introduction
	Prior work
	Software architectural patterns and user interface reference models
	User interface management systems and user interface development environments

	Our approach

	General usability scenarios
	Software architectural patterns

	Classifying the scenarios
	Usability classification
	Software architectural pattern classification

	The benefit/tactic matrix
	Uses in practice
	Future work
	Conclusions
	Acknowledgements
	General usability scenarios
	References


