SCR Toolset

Connie Heitmeyer, Software Engineering Section, Naval Research Laboratory
What it is: The SCR toolset is an integrated suite of tools for specifying and analyzing system and software requirements using the SCR method. The tools support the construction, validation, and formal analysis of requirements specifications in the SCR tabular notation.

Features: The SCR toolset includes a specification editor for constructing the specification, a dependency graph browser for displaying variable dependencies, a consistency checker to automatically detect well-formedness errors (such as missing cases), a simulator for validating the specification, and a model checker for checking application properties.

· Specification Editor: To create and modify a specification, the user invokes the specification editor. Each SCR specification is organized into dictionaries and tables. The dictionaries define the static information in the specification, such as the names and values of variables and the user-defined types. The tables specify how the variables in the specification change in response to input events.
· Dependency Graph Browser: Understanding the relationship between the many variables in a large specification can be difficult. To reduce this problem, the Dependency Graph Browser (DGB) represents the dependencies among the variables in an SCR specification as a directed graph. By studying the graph, a user can detect errors such as undefined variables and circular definitions. The user can also use the DGB to extract and analyze subsets of the dependency graph, e.g., the sub-graph containing all variables upon which a selected output variable depends.
· Consistency Checker: The consistency checker exposes syntax and type errors, variable name discrepancies, missing cases, non-determinism, and circular definitions. When an error is detected, the consistency checker provides detailed feedback to facilitate correction of an error: The table in which the error appears is displayed with the part of the table containing the error highlighted. When the error is missing cases or non-determinism, the checker displays a counterexample demonstrating the error. A form of static analysis, consistency checking avoids executing the specification and reachability analysis. In developing an SCR specification, the user normally invokes the consistency checker first and postpones other analysis, such as simulation and formal analysis, until later.
· Simulator: To validate a specification, the user can run the simulator and analyze the results to ensure that the specification captures the intended behavior. Additionally, the user can define properties believed to be true of the required behavior (in the user-friendly SCR notation) and, using simulation, execute a series of scenarios to determine if any violate the properties. The simulator also supports the rapid construction of front-ends, customized for particular application domains. For example, NRL has constructed a front-end that simulates a cockpit display (see figure below). Using the simulated cockpit display, pilots can evaluate a specification of the cockpit controls and displays. Rather than clicking on input variable names, entering values for them, and viewing the results of simulation presented as variable values, a pilot clicks on visual representations of cockpit controls and sees results presented on a simulated cockpit display. This front-end allows the pilot to move out of the world of software specification and into the world of avionics, where he is the expert. Such an interface facilitates customer validation of the specification.
[image: image1.png]
· Model Checker: After constructing an SCR specification, a developer can invoke the Spin model checker to check properties of the specification. Once a property violation is detected, the user can run the simulator to demonstrate and validate the violation. To make model checking practical, we have developed methods for deriving abstractions from SCR specifications. For example, one method automatically removes variables irrelevant to the validity of the property of interest from the specification, thus deriving a smaller, more abstract specification.

Benefits: Because the required software behavior is represented in SCR’s user-friendly tabular notation rather than a more complex notation (e.g., a notation based on logic) and because the SCR tools are designed for ease of use, the start-up cost for SCR is low in comparison to the start-up cost for many other “formal methods” tools. Moreover, applying the SCR tools enables detection and removal of requirements errors early in the software lifecycle when errors are much cheaper to fix than errors detected later in the lifecycle, for example, during testing. Another benefit is that the SCR method and tools can help developers construct a specification that is unambiguous and concise, readable, and organized as a reference document. Such a specification facilitates both human and mechanical detection of errors.

Successes: Several sites of Lockheed Martin are using the SCR tools to specify and analyze a wide range of software applications, including autopilot logic, flight navigation, flight control and management, and airborne traffic and collision avoidance. Many of these sites use the SCR tools in conjunction with an automatic, specification-based test case generator called T-VEC. Lockheed is also planning to apply the SCR tools in the development of software for the Joint Strike Fighter. In 2002, NRL and Allen Nikora at JPL used the SCR specification editor, the consistency checker, and the simulator to develop a specification of a complex software component of NASA’s Fault Protection Engine (FPE). Constructing the FPE specification required only three weeks, most of the time devoted to clarifying the underlying FPE requirements. The FPE specification will be used eventually as the basis for automatically constructing a suite of test cases.

Ongoing Efforts of Interest: Currently, NRL is evaluating the utility of the SCR technology for specifying and analyzing the required behavior of a small software component of the International Space Station. This component performs fault detection, isolation and recovery for one critical aspect of the spacecraft. Initial results indicate that the technology will be useful both for representing the required behavior of the component concisely, precisely, and unambiguously and for analyzing the current documentation of the component’s requirements for possible defects. The SCR tools are also being applied to the specification and verification of a security kernel for a software-based DoD cryptographic device. The specification and proofs produced using the SCR technology will be part of the evidence submitted to the National Security Agency to support certification of the cryptographic device for operational use in a wide range of DoD mission-critical systems.

Contexts in which it is best used: The SCR tools are designed to specify the requirements of safety-critical, embedded systems and software, where the additional up-front cost of developing high-quality requirements is justified by increased system and software reliability. For the SCR tools to be effective, users should have solid information about the system (or component) requirements and ready access to domain experts who can answer questions about requirements and aid in validating them.

What will a successful collaboration look like?

a. What will the technology provider do? We will work with you during proposal development on planning your collaboration. For such a collaboration, we will provide a three-day training course at your site, an on-line tutorial and customer telephone support during the course of the collaboration. We will help you select a suitable software application. Most importantly, we will also help you construct a high-quality SCR specification of your selected application.

b. What should the development team do? For a short (6-month) collaboration, we suggest 1) the development of an SCR specification, 2) analysis of the specification with the consistency checker (and perhaps a model checker, such as Spin) to weed out specification errors, and 3) validation of the specification with the SCR simulator. Prior to the collaboration, the NASA software development team should communicate with us to determine which candidate applications are good matches for the SCR method and tools. During the collaboration, team members should take the SCR training course; identify a software component to which the SCR tools will be applied; apply the tools and collect developers’ evaluations including ease of understanding SCR specifications, number of defects identified, utility of the consistency checker and the simulator, etc.

c. How will the technology provider work together with the development team to ensure a successful collaboration? During the proposal process, we will set the foundation for success by ensuring a good technical and project match with the SCR technology. In addition to providing customer support for the SCR tools, we will track the collaboration’s progress, and at appropriate points proactively contact the Collaboration PoC, learn about problems or potential problems, obtain preliminary data, offer suggestions on how to proceed, and follow up to ensure that the SCR tools are being used effectively, and the collaboration is satisfying its success criteria.
